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The Signal Importance
of Noise
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Abstract

Noise is widely regarded as a residual category—the unexplained variance in a
linear model or the random disturbance of a predictable pattern. Accordingly,
formal models often impose the simplifying assumption that the world is noise-
free and social dynamics are deterministic. Where noise is assigned causal
importance, it is often assumed to be a source of inefficiency, unpredictability,
or heterogeneity. We review recent sociological studies that are noteworthy
for demonstrating the theoretical importance of noise for understanding the
dynamics of a complex system. Contrary to widely held assumptions, these
studies identify conditions in which noise can increase efficiency and predict-
ability and reduce diversity. We conclude with a methodological warning that
deterministic assumptions are not an innocent simplification.
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Introduction

O! many a shaft, at random sent, Finds mark the archer little meant; And many

a word, at random spoken, May soothe or wound a heart that’s broken!

Sir Walter Scott (1771–1832)

1 Cornell University, Ithaca, NY, USA

Corresponding Author:

Michael Macy, Cornell University, Ithaca, NY 14853, USA.

Email: mwm14@cornell.edu

Sociological Methods & Research
00(0) 1-23

ª The Author(s) 2013
Reprints and permission:

sagepub.com/journalsPermissions.nav
DOI: 10.1177/0049124113508093

smr.sagepub.com

http://www.sagepub.com/journalsPermissions.nav
http://smr.sagepub.com


Science looks for nonrandom patterns that signal the workings of an under-

lying causal process. Those patterns are often overlaid with noise that needs

to be peeled away to reveal the underlying signal. In statistics, it is the central

tendency in the underlying population that motivates the inquiry, not the ran-

dom variations introduced by the luck of the draw. In linear models, the error

term is the unexplained variance, which analysts usually ignore so long as the

errors are random. In measurement models, we expect and tolerate some

amount of noise, so long as it does not obscure the signal that we are looking

for. The signal is the object of inquiry, not the noise.

We take a different viewpoint. The ‘‘signal importance of noise’’ is that it

can be decisively important for understanding outcomes. Strip away the

noise and you may strip away the explanation. This is not because the world

that we are modeling is noisy. There is no problem assuming away random

deviation from the central tendency in a distribution of observed outcomes,

whether that variation corresponds to an inherently random process or to a

systematic process that is simply not yet understood. Rather, we seek to call

attention to the flip side of the issue: There is a problem assuming away

random deviation from the behavior that is assumed to generate an outcome,

whether that deviation corresponds to an inherently random process or to a

systematic process that is simply not yet understood. Simply put, our argu-

ment is not about whether the world is noisy (although we happen to believe

that it is). Our argument is about the theoretical reliability of the results

derived from deterministic theoretical models in which noise is assumed

away.

Noise does not mean ‘‘unpredictable,’’ it means ‘‘uncertain.’’ Uncertainty

need not imply that the events occur rarely, unintentionally, or unpredictably.

Uncertainty can characterize an event with any likelihood, large or small, so

long as the probability is not zero or one. Noisy events may be intended (as

when people toss a coin to choose a restaurant) or unintended (e.g., mistakes

and misperceptions). Noisy events can be predictable, as when the probabil-

ity distribution over possible outcomes is known, or unpredictable when the

distribution is unknown. Whether rare or typical, intended or accidental,

expected or surprising, a noisy event cannot be predicted with certainty.

Consider a cage filled with a finite number of red and blue balls, where

every ball is uniquely numbered and all but one ball is blue. We then draw

a ball at random. If we know the number of red and blue balls, we then know

the probability to draw a blue ball, and as the proportion of blue balls

increases, that probability approaches one asymptotically. However, no

matter how close that probability comes to one, we do not know with cer-

tainty what color will be drawn, even in the case where blue is almost (but
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not quite) certain to be chosen. That is because every ball in the cage has an

equal probability to be chosen, even though the selection of a ball of a given

color is not equally likely. Because every ball has an equal probability to be

chosen, the sequence of draws will be random, meaning that the events have

zero autocorrelation and are independent and identically distributed.

It could be the case that we do not know the number of red and blue balls

and hence we do not know the probability to select blue, but this condition is

unrelated to whether every ball in the cage has an equal chance to be selected.

In either condition—known or unknown probability—the process is stochas-

tic, not deterministic, and the outcome of every draw is inherently uncertain.

The presence or absence of noise is the distinguishing feature of stochastic

and deterministic models. Since noise is unbiased, it is tempting to assume it

away in order to capture the central tendency or latent pattern that is the

object of inquiry. Analytical models based on ordinary differential equations

have often relied on a simplifying assumption that the processes under

investigation are deterministic, an assumption that makes the models more

mathematically tractable. Computational models also tend to be determinis-

tic which makes them easier to debug and allows for dynamics in which

equilibrium outcomes can be strictly identified as the absence of change.

Nevertheless, we caution against this simplification, not because determi-

nistic models are empirically less plausible (a problem that we leave for a

separate investigation), but because noise can have important consequences

for system dynamics that cannot be safely ignored. Historically rooted in

physics, this idea is fundamental to the kinetic theory of gasses, thermody-

namics, and statistical mechanics (e.g., Prigogine 1976), but is less promi-

nent in the social sciences, and in particular, sociology. Nevertheless,

growing interest in analytical sociology—the study of causal processes in

dynamical and complex social systems—has led to increasing awareness

of the possibility for very small perturbations to behavioral rules or local

structure to have highly nonrandom consequences for the dynamics of a

complex system. In particular, while noise is often associated with

inefficiency, unpredictability, and diversity, under certain conditions, ran-

dom perturbations can lead to outcomes that are more efficient, more predict-

able, and less diverse. We review studies in which noise has these highly

counterintuitive effects. In these applications, a deterministic model might

not only be less empirically plausible, it would be theoretically misleading,

in pointing to logical implications of a set of assumptions that do not follow

when the determinism is relaxed.

We start with a brief methodological overview of analytical and computa-

tional approaches to modeling noise in social interaction, beginning with
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game theory. Game theorists have long been aware of the explanatory

importance of noise. Game theorists model random deviations from a best

response strategy caused by miscalculation, misperception (a ‘‘trembling

eye’’ that misperceives which button was pressed), or misimplementation

(a ‘‘trembling hand’’ that presses the wrong button). The best response is the

strategy that provides the optimal outcome for a player, given the strategies

that the other players have chosen. When all players choose their best

response, a Nash equilibrium is said to obtain. Players might deviate from the

best response for several reasons. First, perfectly rational players may

nevertheless guess incorrectly about others’ intentions, as when two people

try to pass in a doorway (van de Rijt and Macy 2009). Second, they may mis-

perceive or misinterpret the strategies of others (Axelrod and Dion 1988),

due to imperfect monitoring of others’ behavior or mistakes in processing the

information. Finally, even if an actor correctly calculates the best response,

mistakes can be made in implementation, characterized by Selten (1975) as a

random ‘‘tremble’’ of the hand.

Since noise can represent different behaviors, it can be modeled in differ-

ent ways (Helbing 2010). Most commonly, the random deviations are

assumed to be independent in the population and unbiased with respect to the

underlying behavior. This is implemented by assigning an identical error

probability to all actors and by drawing the nonoptimal action uniformly at

random from all other possible actions. If, instead, the deviations tend to

be biased, the nonoptimal action can be drawn using a different distribution

(compare, for instance, the effect of uniformly distributed noise in Pineda,

Toral, and Hernández-Garcı́a (2009) to the effect of normally distributed

‘‘white’’ noise in Mäs, Flache, and Helbing 2010). Further, a deviation from

the best response strategy may be more or less likely under different condi-

tions. For example, when there is a lot at stake, actors are hypothesized to be

more likely to deliberate carefully and less prone to make costly mistakes.

This has been implemented by modeling the probability to deviate from the

best response as a function of the payoff (e.g., Binmore and Samuelson 1994;

McFadden 1973; Montanari and Saberi 2010; Seymour 2000; Young 2011).

These advances in game theory have led to increasing awareness of the

importance of noise in other applications as well. In particular, computa-

tional modeling has allowed researchers to systematically investigate the

effects of noise in models of complex systems. Computational methods allow

researchers to relax simplifying assumptions needed for mathematical

tractability. In particular, agent-based computational (ABC) models have

enabled researchers to relax the simplifying assumption of a noise-free

world. In contrast to equation-based analytical approaches, ABC modeling
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replaces a single model of the population with a population of models, each

corresponding to an autonomous but interdependent actor (or ‘‘agent’’). As in

game theory, the modeler supplies a set of micro-level assumptions about the

properties of heterogeneous agents who then interact under constraints cor-

responding to a set of contextual assumptions such as network structure. The

properties of the population emerge out of the interactions among the agents.

This method allows investigators to identify the logical implications at the

population level of a set of micro-level behavioral assumptions. As with

game theory, these implications are often highly counterintuitive and moti-

vate empirical studies to test the hypotheses suggested by the model (Clark

1991; He and Wong 2004; Macy 1995; Ruoff and Schneider 2006; Strang

and Still 2004; Valente 1996; Willer, Kuwabara, and Macy 2009).

Although ABC models can be purely deterministic, most models are

stochastic. The outcomes of a stochastic model are typically a probability

distribution rather than a single ineluctable result. In this review, we survey

stochastic models in which the central tendency of the distribution of out-

comes turns out not to resemble the unique outcome in an otherwise identical

deterministic model. Examples include paradoxical effects in which noise:

� increases both the diversity of new technologies and organizational

practices and their average success,

� allows cultural diversity to collapse and cultural diffusion to diversify,

� makes residential integration more likely in populations that are less

tolerant of ethnic minorities,

� makes collective action more likely to occur but less likely to diffuse,

and

� accelerates the spread of viral information and disease, yet retards and

obstructs the diffusion of costly or risky innovations.

We have grouped these studies around three surprising implications of

noise that have been identified in social science applications of computa-

tional models: Noise can increase efficiency, improve predictability, and

decrease diversity.

Noise and Efficiency

Noise is often assumed to interfere with efficiency and optimality, but

recent studies show that it can also have the opposite effect. We begin by

examining models in which noise is socially inefficient and then consider
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some paradoxical situations in which noise can be individually and/or

collectively beneficial.

Even small amounts of randomness can drive a system away from an

optimal equilibrium, especially if this equilibrium is fragile. The ultimate

example is an equilibrium between nuclear superpowers based on a strategy

of instant massive retaliation (known as mutually assured destruction

[MAD]). Although the world has so far survived the danger, the equilibrium

is vulnerable to the inability to entirely eliminate the possibility of an acci-

dent with fatal consequences for human civilization.

A more familiar example is an accidental affront that triggers an endless

cycle of recrimination between feuding neighbors. Citing Ghandi’s original

insight that an ‘‘an eye for an eye leaves everyone blind,’’ Kollock (1993)

showed how small amounts of noise can lead to the collapse of cooperation

in repeated play of the Prisoner’s Dilemma. In this game, players have a

choice between two actions, ‘‘cooperate’’ and ‘‘defect.’’ Although coopera-

tion yields the maximum mutual benefit, each actor is always individually

better off by defecting in a single play of the game. That is not true, however,

if the game is ongoing. In a famous study, Robert Axelrod showed how the

cumulative benefit from mutual cooperation in future interactions may out-

weigh the temptation to defect in the current moment, which Axelrod calls

‘‘the shadow of the future’’ (Axelrod 1984; Axelrod and Hamilton 1981).

Axelrod invited leading experts in game theory to submit strategies to com-

pete against each other in a computerized tournament. The winner was TIT

FOR TAT, a simple strategy that starts by cooperating but thereafter

responds in kind to the partner’s previous action. The strategy is successful

because it is nice (it does not defect unless provoked) and also forgiving

(it will resume cooperation if the opponent stops defecting), but it is not naive

(it always retaliates when provoked).

However, Kollock (1993) demonstrated a potentially devastating

weakness. TIT FOR TAT is vulnerable to random errors that can trigger

an endless cycle of retaliation (Molander 1985; Reeves and Pitts 1996).

Using computer simulation, he showed that more generous and forgiving

strategies (e.g., TIT FOR TWO TATS) can perform better in the presence

of small amounts of noise. Signorino (1996) identified a related vulnerabil-

ity. Not only is TIT FOR TAT insufficiently forgiving, it also lacks contri-

tion, that is, it is unable to accept punishment after its own unprovoked

defection. While forgiveness is required to prevent endless cycles of recri-

mination triggered by the partner’s ‘‘trembling hand’’ or one’s own misper-

ception, contrition is needed to correct for one’s own miscue or the

partner’s misperception.
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Helbing and Yu (2009) demonstrated another way that noise can under-

mine cooperation in the Prisoner’s Dilemma. In a noise-free world in which

players imitate the strategy of their most successful neighbor, cooperation

can be sustained when cooperators are clustered on a spatial network. How-

ever, cooperation collapses when a random mutation causes a cooperator to

defect. The higher payoff to defectors then causes defection to quickly

spread.

Noise can also be incorporated in games as a mixed strategy equilibrium.

For example, in the game of Chicken, two drivers speed toward each other,

and each has two choices: to swerve to avoid the oncoming driver or stay the

course. The collectively optimal equilibrium outcome is for one player to

swerve to avoid a collision and the other to stay the course. This equilibrium

is collectively optimal in that there is no alternate outcome that is as good or

better for both players simultaneously. Game theorists refer to this as a pure

strategy equilibrium because each player is committed to just one of the two

possible choices. There is also a mixed strategy equilibrium in which each

player assigns a positive probability to swerving and staying, such that both

players are indifferent between the two actions. However, there is now the

risk that both players will randomly choose to stay the course, resulting in

a collision that both would prefer to avoid. Thus, both players will be better

off to coordinate their actions on a pure strategy equilibrium in which one

driver gives the right of way to the other and nothing is left to chance.

These studies illustrate the danger of assuming noise away in a determi-

nistic model of social interaction. In the absence of noise, cooperation can

be sustained by strategies of reciprocity/retaliation, by clustering of coopera-

tors, and by the willingness of one side or the other to avoid an action that

might lead to a catastrophe. However, the deterministic assumption turns out

to be a surprisingly fragile simplification. Any nonzero error rate is sufficient

to trigger the collapse of social order under conditions in which cooperation

would otherwise thrive.

The vulnerability to random error demonstrated by Kollock and by Helb-

ing and Yu resonates with our naive intuition that noise—like snakes, forest

fires, and the common cold—is generally something that we would prefer to

avoid. Yet, like these other seeming annoyances (which are themselves not

necessarily noisy), it turns out that noise can also be indispensable, as shown

in the studies we turn to next.

Although random errors usually prevent rational actors from making opti-

mal choices, game theorists have identified a situation in which deliberate

randomization is the individually optimal strategy—when we need to keep

other players guessing about our intentions. A good example is the penalty
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kick in soccer (Chiappori, Levitt, and Groseclose 2002). If the kicker favors

one direction and the goalie knows this, then the goalie will have an advan-

tage, and vice versa if the kicker knows that the goalie has a bias. Thus, both

sides are better off to choose directions randomly, by playing a mixed strat-

egy, as in ‘‘mixing it up.’’ By keeping the other player guessing, mixed stra-

tegies are the unique best response in zero-sum games like the penalty kick,

‘‘matching pennies,’’ and ‘‘rock, paper, scissors.’’ In zero-sum games, one

player’s loss is another player’s gain. A mixed strategy can also be a best

response in games in which there is an opportunity for mutual gain and

mutual loss.

There are other situations in which random errors can improve the collec-

tive as well as individual outcome. A simple (and somewhat trivial) example

is the flip side of the problem identified by Kollock (1993). If people defect

in iterated Prisoner’s Dilemma only because they do not trust others to coop-

erate, a random act of cooperation can generate an endless cycle of recipro-

cation in the same way that random defection can trigger an endless cycle of

retaliation (Bendor, Kramer, and Swistak 1996). Helbing and Yu (2009) dis-

cover similar effects of noise in a spatial Prisoner’s Dilemma game with imi-

tation and migration. Players imitate successful neighbors and migrate to

empty locations where their strategy would be more successful. Under these

assumptions, the authors found that noise can trigger a transition from a col-

lectively suboptimal to optimal equilibrium. In a world where everyone

almost always defects, random mutation eventually creates a small cluster

with enough cooperators to make cooperation viable, despite the vulnerabil-

ity to exploitation by defectors. ‘‘Success-driven migration’’ attracts defec-

tors but also allows cooperators to protect themselves from invasion by

becoming densely packed. In this way, cooperation can spontaneously

emerge through a chance event that triggers a cascade. The authors conclude:

‘‘The level of cooperation decreases with the noise strength [ . . . ] but mod-

erate values [of noise] can even accelerate the transition to predominant

cooperation’’ (p. 7).

More generally, noise can disrupt premature lock-in on a suboptimal equi-

librium and allow agents to discover a superior solution. This possibility lies

behind the process of annealing in metallurgy—heating the metal introduces

noise to the movement of atoms, which allows them to rearrange, which in

turn results in fewer imperfections in the crystal structure. Processes like this

led computer scientists and mathematicians to develop search algorithms

based on stochastic optimization. If the search stalls near a suboptimal solu-

tion, random perturbation spontaneously pushes the algorithm toward

uncharted areas of the search space (Spall 2003).
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Biological evolution is a compelling example of stochastic optimization

in nature, in which random errors (in the form of genetic mutations) contrib-

ute to the search for adaptive solutions. Random mutations can increase or

decrease an organism’s fitness and therefore have no inherently adaptive

function. It is natural selection, not mutation, that allows evolution to find

better solutions to adaptive problems. However, without mutations, natural

selection will eventually exhaust the genetic diversity of the population.

Without heterogeneity, recombination is unable to build on partial solutions

to find more adaptive strategies. Mutation restores heterogeneity in the face

of selection pressures that tend to reduce it. Too much mutation of course is

also suboptimal, but a small amount is essential to allow evolutionary explo-

ration of an uneven fitness landscape that can trap the population on a ‘‘false

peak.’’

Principles of evolutionary search have been applied to technological inno-

vation and organizational learning, such as March’s model of the trade-off

between exploitation and exploration (March 1991; see also Helbing, Trei-

ber, and Saam 2005; Lazer and Friedland 2007; Miller, Zhao, and Calantone

2006). March argues that although ‘‘the exploitation of old certainties’’ has

short-term benefits, ‘‘the exploration of new possibilities’’ improves organi-

zational performance in the long term. Exploitation involves copying best

practices, analogous to the process of natural selection in biological evolu-

tion and with the same problem of premature lock-in on suboptimal solu-

tions. By allowing for random search as well as systematic independent

inquiry, exploration increases the diversity of possible solutions competing

for selection/exploitation.

Noise and Predictability

In linear models, the slope parameters allow prediction of an outcome based

on the state of one or more covariates, while the error term represents random

deviation of the observations from the predicted values. Similarly, random

measurement error obstructs accurate identification of an object of investiga-

tion. More generally, if an event is random, then a particular occurrence of

the event cannot be predicted, even if the probability distribution is known.
1

Intuition therefore suggests that the outcome of a process will become less

predictable as the level of noise in that process increases. Nevertheless, in

this section, we review studies of social dynamics in which the introduction

of small amounts of noise makes the outcomes more rather than less

predictable.

Macy and Tsvetkova 9



Granovetter’s (1978) threshold model of collective behavior provides a

compelling illustration. Granovetter modeled a threshold as the critical

number of participants at which an individual becomes willing to join a

collective behavior. The weaker the individual’s interest in a successful

mobilization, the greater the tendency to wait to see how many others are

willing to participate. Depending on the distribution of individual thresholds,

cascades are possible in which each additional participant triggers participa-

tion by others. Granovetter showed how a cascade can stall if it reaches a gap

in the distribution of thresholds. To take an extreme example, suppose every-

one has a threshold of N � 1, that is, no one will participate unless everyone

else does. Not surprisingly, collective behavior in this population is very

likely to fail. Equally unsurprising, if everyone has a threshold of zero, the

collective behavior is guaranteed to succeed. But suppose everyone has a

threshold of one. Although the level of interest in a successful mobilization

is nearly as strong as the threshold-zero case, the threshold-one outcome is

identical to the case of threshold N � 1—everyone looks around to see if

someone else will be the first mover and therefore no one participates. These

stylized illustrations demonstrate a key insight of Granovetter’s article: The

equilibrium level of participation need not correspond to the level of interest

in successful mobilization.

The outcome in each of these examples is a deterministic Nash equili-

brium. It is a Nash equilibrium because the level of participation is such that

each individual has chosen their best response given the actions of others. It

is deterministic because the outcome is completely controlled by the values

assigned to the model parameters and hence will always be the same, no mat-

ter how many times the experiment is repeated. Hence, the equilibrium level

of participation can never change.

Now suppose instead that the model is stochastic rather than determinis-

tic. Specifically, suppose everyone in the threshold-one population has some

epsilon probability to participate, no matter how many others have already

done so. Again, everyone is waiting around for someone to go first. But this

time, someone eventually acts by chance rather than by threshold, triggering

a cascade. The outcome in the threshold-one case is now almost indistin-

guishable from the threshold-zero case and very different from the case of

threshold N � 1. This shows that Granovetter’s insight, while theoretically

interesting, rests on a deterministic assumption that is empirically

implausible.

The stochastic version of the threshold model yields a counterintuitive

insight of its own. For very small epsilon, each individual has only a very

small probability of experiencing a random event, but the probability that
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someone will trigger a cascade increases exponentially with N. (Technically,

the probability of the trigger event is 1 � (1 � e)N). This insight illustrates

one of the most important discoveries in the theoretical literature on collec-

tive action—‘‘the paradox of group size’’ (Oliver and Marwell 1988). The

larger the population, the higher the probability that there will be a chance

outlier (or perhaps a small group of outliers) who is willing to go first.

The introduction of noise into Granovetter’s deterministic model has an

additional surprise: System behavior becomes more predictable, not less. If

we know everyone’s threshold, the deterministic model can predict the out-

come of the mobilization perfectly. The problem arises when thresholds are

unknown. Although Granovetter’s aim was not to model predictability, a key

result is that, depending on the location of the gaps in the distribution of

thresholds, every possible outcome—from zero to N participants—is a poten-

tial equilibrium, regardless of the average level of interest in the mobiliza-

tion. It is not hard to imagine that observers might have a reasonable

estimate of the average interest in a successful mobilization, from which

we can estimate whether the average threshold is closer to 0 or to N � 1.

In contrast, it is much more difficult to locate in advance the gaps in the

distribution of thresholds that might cause a cascade to stall. In the determi-

nistic model, the outcome is highly sensitive to those gaps, and therefore

difficult to predict. But if we assume that the process is stochastic, these

deterministic equilibria can be disturbed by a random, idiosyncratic decision

to participate, allowing the cascade to proceed. As a result, the long-term ten-

dency of the stochastic process can be expected to correspond with the level

of interest in the outcome. In short, adding noise makes the outcome more

predictable, given prior knowledge of the level of interest in the outcome

among the members of the population. Or to put it the other way around, the

assumption that the world is noisy allows us to have greater confidence that

the likelihood of a successful collective action increases with the level of

interest in success. If we lived in Granovetter’s deterministic world, that con-

fidence would be unwarranted, for the reason that Granovetter identifies.

Granovetter did not relax the deterministic assumption and did not note

the possibility that noise can make outcomes more predictable. Game theor-

ists, in contrast, have developed this paradoxical effect of noise into an

important line of theoretical research, beginning with the pioneering work

of the evolutionary biologists Smith and Price (1973). Smith and Price used

game theory to model an evolutionary process in which Nature selects stra-

tegies based on their average payoffs. The evolutionary application confronts

an important limitation of classical game theory—the assumption that play-

ers exercise rational foresight. This assumption may be warranted for games
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played by expert strategists in business, politics, and the military who have

learned how to use backward induction to identify their best initial move

by reasoning back from the last move in a sequence. However, this assump-

tion introduces a teleological error for optimizing processes that rely on trial

and error, not rational foresight. Building on biological insights, Smith and

Price (1973) proposed ‘‘evolutionary stability’’ as a refinement that elimi-

nated any Nash equilibrium based on a strategy that, once adopted by every

player, could still be invaded by a randomly mutated alternative. For exam-

ple, in repeated play of Prisoner’s Dilemma, TIT FOR TAT is a Nash equi-

librium but it is not evolutionarily stable because it can be invaded by a

random mutant variation that always cooperates, which in turn can make

the population vulnerable to invasion by another mutant that always

defects.

At about the same time as the discovery of evolutionary stability, Selten

(1975) proposed another refinement—the ‘‘trembling hand’’—that elimi-

nates any equilibrium that cannot withstand the effects of random perturba-

tion. Suppose two friends enjoy meeting at a restaurant for dinner more than

eating alone at home, but they really hate eating alone at a restaurant. This

game has two Nash equilibria in which the friends eat together, whether at

home or at a restaurant. However, eating at the restaurant is not trembling

hand perfect (assuming a world without cell phones). That is because there

is always a small chance that the friend will not show up due to some unfore-

seen chance event.

Foster and Young (1990) proposed a related refinement of the Nash equi-

librium called stochastic stability. They started by supposing that the system

is continually exposed to perturbations. Then, a stochastically stable equili-

brium is one that prevails in the long run as the rate of perturbation

approaches zero. In the eating out example, eating at home is the risk-

dominant strategy. Foster and Young showed that, as time goes to infinity

and the probability of error slowly vanishes, the risk-dominant strategy will

be chosen almost all the time.

Although the abstract representation of these problems in game theory

may make the solutions appear artificial to empirical social scientists, all

three equilibrium refinements—evolutionary stability, trembling hand, and

stochastic stability—manifest a common underlying principle that is

intuitively appealing: an equilibrium must withstand the effects of random

perturbation. As Granovetter’s threshold model clearly illustrates, an

equilibrium that is not robust to noise does not have much predictive power.

By removing these fragile equilibria from the set of possible solutions, the

predictive power of the model can be increased, often dramatically.

12 Sociological Methods & Research 00(0)



Noise, Diversity, and Diffusion

We have seen how noise can increase (as well as decrease) efficiency, and

increase (as well as decrease) predictability. We now turn to studies in which

noise can increase (as well as decrease) diversity. In these models, people

come to be more similar to their neighbors in a dynamic social network,

either because they change their attributes to match their neighbors, change

their neighbors to match their attributes, or both. We begin with studies of

cultural assimilation, then turn to ethnic segregation, and conclude with

models of diffusion.

Cultural Assimilation

The earlier discussion of noise and optimization called attention to a funda-

mental principle of evolution by natural selection—the need for random

mutation to restore genetic diversity in the face of selection pressures that

tend to reduce it. The diversifying effect of random variation is highly intui-

tive, yet it turns out that noise can also have the opposite effect—causing

diversity to decline or completely disappear (Flache and Macy 2011).

This was demonstrated recently by Klemm et al. (2003a, 2003b; cf. De

Sanctis and Galla 2009) in an article that extended Axelrod’s (1997) earlier

research on cultural assimilation. Axelrod’s model addresses the paradox that

cultural diversity is both persistent and precarious. Although Greig (2002)

stresses the robustness of cultural minorities to the forces of assimilation,

many others accept the more pessimistic outlook about the future of diversity

expressed by the United Nations Educational, Scientific, and Cultural Orga-

nization (UNESCO) in a 2001 white paper. For example, there are about

6,800 languages worldwide, but about half that number are expected to

become extinct (Crystal 2000). Axelrod investigated the dynamics of assim-

ilation and diversity using agent-based models that combined two widely

observed social mechanisms: homophily (the tendency to interact with sim-

ilar others) and social influence (the tendency to become more similar to

those with whom we interact). These processes imply a self-reinforcing

dynamic that might be expected to drive populations toward cultural homo-

geneity. However, Axelrod showed that this is not necessarily the case,

because of what Flache and Macy (2011) call ‘‘a cultural analog of biological

speciation.’’ If two people are dissimilar on every salient cultural dimension,

Axelrod argues, they can no longer interact, analogously to the inability of

sexually reproducing organisms with a common ancestor to mate once they

differentiate beyond a critical threshold. As a consequence, homophily and
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social influence can ‘‘speciate’’ stable cultural regions that are protected

from assimilation. In short, the same process that generates local conver-

gence also preserves diversity at the global level.

Although Axelrod’s explanation is elegant and compelling, it turns out to

depend decisively on a deterministic assumption—that cultural traits are not

susceptible to random mutation. Klemm and collaborators (2003a, 2003b; cf.

De Sanctis and Galla 2009) introduced the empirically more plausible possi-

bility for random perturbation of cultural traits. Their model confirms what

intuition would suggest—that random mutation increases local diversity.

However, the increase in local heterogeneity can cause the collapse of cul-

tural diversity at the global level. To see why, consider a simple case of a

perfectly polarized population composed of two groups whose members are

identical in every respect to other in-group members and exactly the opposite

of every member in the out-group. This situation precludes cultural contact

and influence between the groups that might otherwise lead to mutual assim-

ilation. In other words, the polarized population is an equilibrium. However,

as noted in the discussion of predictability, a deterministic equilibrium can be

extremely brittle to random perturbation. Small amounts of cultural noise can

create the common ground that makes interaction possible across otherwise

impermeable cultural boundaries. This interaction, in turn, reduces remain-

ing differences, leading to even more interaction. ‘‘Thus, formerly dissimilar

neighbors become increasingly similar until no differences remain and a new

cultural boundary forms around a larger region. Eventually this boundary too

will be breached by a perturbation that creates a common trait between oth-

erwise dissimilar neighbors, and so on, until no differences remain’’ (Flache

and Macy 2011:972–973).

If the mutation rate is sufficiently high, the resulting cultural turbulence

precludes the formation of stable cultural regions, a pattern Centola et al.

(2007:918) characterize as ‘‘cultural anomie’’ to indicate the absence of

conformity to local conventions. As Flache and Macy note, cultural anomie

should not be confused with diversity. ‘‘The latter requires cultural conver-

gence within internally homogenous regions that differ from one another suf-

ficiently that they maintain their distinctiveness over time. Anomie means

distinct regions cannot coalesce, due to the evanescence of individuals who

differentiate themselves from one another more than they are attracted to one

another’’ (Flache and Macy 2011:973).

In short, noise attacks diversity from two sides, according to Flache and

Macy. If the noise rate is sufficiently low, perturbations breach the boundaries

between cultural regions, promoting assimilation. If the rate is sufficiently

high, perturbations preclude local convergence. Thus, cultural diversity is only

14 Sociological Methods & Research 00(0)



viable within a narrow window of perturbation rates that closes asymptotically

as population size increases (Flache and Macy 2011).

Ethnic Segregation

The effects of noise on cultural differentiation have also been investigated in

the context of ethnic segregation of residential networks. In a seminal article

in the Journal of Mathematical Sociology, Schelling (1971) showed how a

tipping process can lead to complete segregation even in populations that are

highly tolerant of ethnic diversity. However, like Granovetter and Axelrod,

Schelling assumed that decision making was based on a deterministic

threshold function. So long as the proportion of coethnic neighbors is below

a critical threshold, no one ever moves, and above the threshold, they never

stay.

In a widely celebrated article, Bruch and Mare (2006) argued that Schel-

ling’s results were not robust: The tipping process at the population level was

an artifact of Schelling’s assumption of a tipping process at the individual

level, such that individuals do not react to changes in the ethnic composition

of their neighborhoods except at a single threshold, such as 50 percent

coethnic neighbors. Bruch and Mare’s model captures the more empirically

plausible assumption that people are far more sensitive to small changes in

the ethnic composition of their neighborhood than Schelling assumed. When

the authors replaced Schelling’s threshold function with a continuous func-

tion, segregation largely disappeared. More precisely, segregation levels

were lower in a population that notices every additional out-group neighbor,

compared to a population that tolerates ethnic diversity up to a critical

threshold.

This highly counterintuitive discovery led van de Rijt, Siegel, and Macy

(2009) to carefully replicate Bruch and Mare’s model. However, they found

the opposite of what Bruch and Mare had reported, and Bruch and Mare

(2009) eventually acknowledged that their original finding was an artifact

of a coding error. Using a model identical to Bruch and Mare’s, but without

the ‘‘bug,’’ van de Rijt et al. found that sensitivity to small changes in ethnic

composition generally leads to more segregation, not less. The lower levels

of segregation that Bruch and Mare report are caused by the additional

assumption that the decision whether to move is highly random. In

Schelling’s model, decisions to move are completely determined by ethnic

composition of the neighborhood. At the other extreme, Bruch and Mare

assumed that decisions are heavily influenced by chance. It is this high level

of noise, not the sensitivity to ethnic composition, that causes segregation to
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decline. Even a population of racists will tend to integrate if the level of ran-

dom mixing is sufficiently high. By examining the full range of noise levels,

from purely deterministic to purely random, van de Rijt et al. found that the

effects of noise are amplified by sensitivity to ethnic composition. When

people notice every additional out-group neighbor, random moves can trig-

ger ‘‘error cascades’’ whose logic is identical to the tipping process revealed

by Schelling. Just as a single decision to move out of a neighborhood with too

many out-group neighbors can precipitate a cascade of ‘‘white flight,’’ a ran-

dom move into a neighborhood with too many out-group neighbors can trig-

ger an error cascade that leads to ethnic integration. Sensitivity to small

changes in ethnic composition can promote cascades in both directions—

toward segregation when cascades are triggered by nonrandom decisions

to leave a changing neighborhood, and toward integration when cascades are

triggered by random decisions to move in. Thus, as the noise level increases,

it becomes possible for error cascades to integrate members of an intolerant

population, whose dissatisfaction with their current location increases with

each additional out-group neighbor. Paradoxically, van de Rijt et al. showed

how these cascades may be less likely in a tolerant population that is largely

indifferent to small changes in ethnic composition.

Diffusion of Innovation

Random moves on a residential lattice, as modeled by Bruch and Mare and

by van de Rijt et al., can also be modeled as a dynamic network in which ties

between neighbors are randomly formed and broken. Random ties facilitate

contact between otherwise distant clusters, which affects not only the

dynamics of cultural assimilation and ethnic segregation but also the spread

of disease, information, fads, fashions, and social movements.

The importance of these network bridges is illustrated in one of the most-

cited articles in sociology—Granovetter’s (1973) study of the ‘‘strength of

weak ties.’’ According to Granovetter, compared to ties between close

friends, ties between acquaintances tend to involve lower trust, less frequent

interaction, and weaker commitment. However, the strength of these weak

ties is that they tend to bridge between network clusters, in contrast to the

strong ties that interconnect a cluster of close friends. These bridges provide

distant regions of a social network with access to information, which facili-

tates diffusion, promotes social integration, and explains the famously

observed ‘‘six degrees of separation’’ between any two randomly chosen

people on the planet. But how can this ‘‘small world’’ be reconciled with
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evidence that social networks are highly clustered, such that most people are

embedded in a tightly knit ‘‘small circle of friends?’’

The answer was discovered by Watts and Strogatz (1998; Watts 1999).

They began with a highly clustered network and then introduced structural

noise by replacing a randomly selected tie with a tie to a randomly chosen

node. They then measured the time required for a contagion (e.g., a biologi-

cal or cultural virus) to spread from one node to the entire network of con-

nected nodes. As expected, with no random rewiring, contagions spread

much more slowly than in a network in which every tie was random. The sur-

prise was what happens in a ‘‘small world’’ network—one that remains

highly clustered because only about 1 tie in 10 has been randomly perturbed.

Watts and Strogatz found that contagions spread nearly as fast as in a com-

pletely random network. In other words, small amounts of randomness in the

structure of a highly clustered network can significantly accelerate the spread

of contagions that readily transfer from one individual to another, such as a

contagious pathogen, news about a job opening, a viral rumor, or a catchy

phrase.

This ‘‘small world’’ effect could be taken to suggest that it is relational

randomness, and not the tightly patterned relations among close friends, that

forms the ‘‘glue’’ connecting the social world. However, a follow-up study

by Centola and Macy (2007) showed that network noise can also have an

effect that is the opposite of what Watts and Strogatz discovered. In their

small-world experiment, Watts and Strogatz assumed that contagions have

a threshold of one, meaning that the contagion can spread through contact

with a single infected neighbor. However, Centola and Macy remind us that

many social contagions have thresholds greater than one. For example, hear-

ing the same news from two or more friends is redundant, but hearing the

same advice from two or more friends is reinforcing. The same is true for

adopting a costly innovation, joining a risky social movement, or participat-

ing in a controversial practice such as using contraceptives in a deeply reli-

gious community. For these social contagions, the larger the number of

others who have already adopted the behavior, the greater the sense of con-

fidence and legitimacy conveyed to their network neighbors.

Centola and Macy (2007) began by replicating the original Watts and

Strogatz experimental setup, randomly perturbing the structure of a highly

clustered network, and observing the rate of propagation. They then repeated

the contagion experiment, except that they increased the threshold of adop-

tion from one infected neighbor (which they term a ‘‘simple contagion’’) to

two or more (a ‘‘complex contagion’’). Not only did random rewiring not

accelerate diffusion, it completely prevented complex contagions from
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spreading. While simple contagions like information or disease benefit from

random ties, the spread of complex contagions requires the redundant struc-

ture found in local clusters, which random rewiring erodes. Just as a small

amount of network noise allows simple contagions to attain the maximum

possible rate of propagation, it takes only a small amount of random rewiring

to preclude the takeoff of a complex contagion.

Conclusion

Social scientists typically regard noise as a residual category—the unex-

plained variance in a linear model or the random disturbance of a systematic

pattern. Accordingly, noise can appear to be nothing more than a meaning-

less or irrelevant behavior that obscures the underlying causal mechanisms

in social life and can therefore be safely removed in order to more accurately

identify and measure the object of inquiry.

Nevertheless, recent decades have witnessed increasing awareness of the

explanatory importance of random error in social interactions. Our review of

these studies showed how small perturbations to behavioral rules or local

structure can lead to dramatic changes in the dynamics and the equilibria

of a social system. In complex systems of interdependent action, mistakes

can get amplified. A single error can trigger a cascade of behavioral changes

or a migration into a new solution space and thus steer the dynamics in an

entirely new and unexpected direction. Contrary to widely held assumptions,

the studies we reviewed demonstrate that, under certain conditions, random

perturbations can have highly paradoxical effects, making outcomes more

efficient, more predictable, and less diverse:

� Noise can disturb a local equilibrium that is globally suboptimal,

leading to a collectively preferred outcome.

� Eliminating fragile equilibria reduces the size of the solution set,

making outcomes more predictable.

� While noise increases local heterogeneity, this can in turn facilitate

social interactions that reduce global diversity.

� While random mobility can reduce neighborhood ethnic segregation

by triggering ‘‘error cascades,’’ these cascades are more likely in an

ethnically sensitive population than in one where people are more tol-

erant of ethnic diversity.

� A few random ties can shrink our world for the spread of information

and disease, but these weak ties are not conducive to the early spread
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of social contagions such as controversial beliefs or high-risk collec-

tive behaviors.

The take-home message from these studies is that deterministic models

that assume away noise should be approached with caution. If the predictions

of a deterministic model are not robust to noise, they may conceal important

dynamics, especially in multidimensional nonlinear systems. Noise can have

highly counterintuitive effects that are difficult to recognize in models

expressed in natural language. Game theoretic and ABC models have proved

highly useful in the effort to reveal, identify, and analyze effects that often

defy intuition. Nonetheless, a formal model in which individual behavior

is completely determined, flawlessly executed, entirely knowable, and per-

fectly predictable is not only empirically implausible, it can also be highly

misleading.
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Note

1. While all random events are unpredictable even when the probability is known,

unpredictable events are not necessarily random. For example, an observer who

does not know the encryption key is unable to predict the next value in a nonran-

dom sequence of encrypted numbers.

References

Axelrod, R. 1984. The Evolution of Cooperation. New York: Basic Books.

Axelrod, R. 1997. ‘‘The Dissemination of Culture: A Model with Local Convergence

and Global Polarization.’’ Journal of Conflict Resolution 41:203-26.

Macy and Tsvetkova 19



Axelrod, R., and D. Dion. 1988. ‘‘The Further Evolution of Cooperation.’’ Science

242:1385-90.

Axelrod, R., and W. D. Hamilton. 1981. ‘‘The Evolution of Cooperation.’’ Science

211:1390-96.

Bendor, J., R. Kramer, and P. Swistak. 1996. ‘‘Cooperation under Uncertainty: What

is New, What is True, and What is Important.’’ American Sociological Review 61:

333-38.

Binmore, K., and L. Samuelson. 1994. ‘‘An Economist’s Perspective on the Evolu-

tion of Norms.’’ The Journal of Institutional and Theoretical Economics 150:

45-63.

Bruch, E. E., and R. D. Mare. 2006. ‘‘Neighborhood Choice and Neighborhood

Change.’’ American Journal of Sociology 112:667-709.

Bruch, E. E., and R. D. Mare. 2009. ‘‘Preferences and Pathways to Segregation:

Reply to Van de Rijt, Siegel, and Macy.’’ American Journal of Sociology 114:

1181-98.
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