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Abstract 

Social structure is both a consequence and a determinant of human behavior. In order to shed 

light on the problem of the emergence and maintenance of social order, one of the central 

underlying quests in social science, we need to understand how behavior and structure 

coevolve. This paper discusses how this coevolution process can be modeled with cooperation 

and coordination games on dynamic networks. I review models from recent analytical, 

simulation-based, and experimental studies by reconstructing them within a general formal 

framework. The analysis reveals that in theoretical studies, the relative speed of network 

update (how often actors reconsider their links compared to their action choice) is one of the 

factors with the biggest impact on macro-outcomes such as efficiency, hierarchical 

organization and inequality. However, this effect is conditional on one assumption that is 

common to all existing models, namely, that players employ the same action against all of 

their partners. I argue that future research should relate models to applications and 

experimental tests more adequately, which often implies allowing for discriminatory action.  
 

 

 

1. Introduction 

 

The problem of social order is undoubtedly one of the most central underlying quests in social 

science. The idea of order concerns two conceptually distinct aspects: social structure (forms 

of relating) and human action (ways of behaving). Thus, two of the most widely studied 

subject areas by social scientists are the formation, evolution, and reproduction of patterns of 

interaction (e.g. organizations) and the emergence and maintenance of cooperation (e.g. 

collective action) and coordination (norms, conventions, etc.).  

The two aspects of social order, however, are not independent: social structure is both a 

consequence and a determinant of human behavior (Coleman, 1990). Hence, in order to truly 
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grasp how social order emerges and persists, we need to understand how behavior and 

structure coevolve. In this paper, I address the question of how this coevolution process can 

be scientifically modeled. My goal is twofold: first, to critically reconstruct coevolution 

models from recent analytical studies, simulations and experiments and second, to summarize 

results, point biases, discover gaps and indicate directions for further research. 

The analysis focuses on a conceptualization of order as a stable network of relations that 

emerges from the dynamics of incentive-guided individual behavior. Particularly, I 

concentrate on game-theoretic approaches to network formation and put aside random-graph 

and stochastic-process models (e.g. Watts and Strogatz, 1998; Barabasi and Albert, 1999; 

Robins et al., 2005). Additionally, I only cover game-theoretic models from the social 

sciences and neglect comparable developments by evolutionary biologists, physicists, 

computer scientists and statisticians (e.g. Skyrms and Pemantle, 2000; Biely et al., 2007; 

Snijders et al., 2007), as they differ in methodological approach and substantive focus. 

Furthermore, I concentrate on how networks coevolve with individual behavior as actors 

search for partners to interact with. I do not consider the other approach to network formation 

explored in the social-scientific game-theoretic literature: networks evolving due to 

individuals striving for particular network positions (e.g. Buskens and van de Rijt, 2008; 

Burger and Buskens, 2009; for a theoretical overview, see Jackson, 2005 and Jackson, 2008; 

for an overview of recent experiments, see Kosfeld, 2003). I also limit the analysis to three 

different games of coordination and cooperation: the Coordination Game, Prisoner’s Dilemma 

and Hawk-Dove Game. I do not explore games of exchange, which have been extensively 

studied out of the context of two-player two-action non-cooperative games (Willer, 1999; for 

studies of dynamic exchange networks, see Willer and Willer, 2000; Pujol et al., 2005; Dogan 

et al., 2009). 

The paper is structured as follows. I first delineate a general formal framework that 

reconstructs all reviewed models as a social game consisting of a network game and an 

underlying non-cooperative 2x2 game. I then discuss the specifics of the stages of modeling 

the social game: the link formation stage (the definition of links and the cost function for 

links), the game playing stage (the strategies and payoffs in the three games), the sequence of 

choices and the “solution” (the equilibrium and stability concepts). Next, I combine analytical 

solutions, simulation results and experimental findings to relate the model parameters to 

macro-outcomes such as network structure and global behavior, as well as particular network-

behavior patterns. Last, I elaborate on the common assumption of players using the same 

action against all partners and provide suggestions how my critique could be addressed in 

future research. 
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2. Formal framework for social games 

 

As a new research line that has emerged and shaped up only in the past decade, the study of 

the coevolution of behavior and networks has been undergoing a rapid but largely 

disorganized development. Currently, there is a variety of analytical studies, simulations and 

experiments, all based on models with different assumptions and variables. In order to 

facilitate the comparison of the various approaches and their results, this section delineates a 

general formal framework that fits the game-theoretic coevolution models found in the 

literature. The base model has two components: a network game (defining an interaction 

network) and an underlying game (a coordination/cooperation game played by connected 

actors). The combined strategies of the two games define the strategy of what, in line with an 

emerging convention, I call a social game.  

Formally, let },...,2,1{ nN =  be a finite set of players, where we assume that the number of 

players 3≥n , as two-person networks are trivial. Let ),...,( 1 inii ggg =  be the vector of link 

decisions of player i , where }1,0{=ijg  and Nji ∈, , ji ≠ ; by convention, 0=iig  for all i , 

that is, ties are non-reflexive. The set of all possible individual network decisions is  
)1(}1,0{ −⊆ nnG . Since the literature uses two different approaches to forming links (see next 

section), it will also be useful to define a symmetrized version of ig , denoted by ig  and 

indicating the established links for player i . Thus, 2/)1(}1,0{ −⊆ nnG  defines a graph with its 

nodes representing the players and its edges – the established symmetric links. Furthermore, 

let }1:{ =∈≡ iji gNjN  denote the subset of players to whom i  has proposed a link and 

}1:{ =∈≡ iji gNjN  – the players i  interacts with. We define ii Nn =  as the cardinality of 

iN , i.e. the number of actors to whom i  has proposed a connection and respectively, 

ii Nn =  as the number of i ’s interaction partners. Lastly, since both initiating and 

preserving social interactions usually involve some time and effort, we allow links to be 

costly: we define a cost function ),( ii nnφ  for proposing in  links and/or participating in in  

links. 

It is generally assumed that players i  and j  play the underlying game if they are 

connected in G .1 We define the underlying game Γ  to be a two-player two-action symmetric 

                                                 
1 Exceptions are Hojman and Szeidl (2006) and Mengel and Fosco (2007) who consider interaction with both 
direct and indirect neighbors. Arguably, the assumption that an actor can play a game with indirect neighbors is 
theoretically problematic: it is analogous to modeling an N-person game while ignoring communication costs 
and obscuring the true interaction structure. 
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game in normal form with a common action set },{ YXA =  and a payoff function π , where 

→× AA ℝ and player i ’s action profile is ia .  

Finally, we model the strategic situation of the player in the social game SΓ  as a 

combination of her strategies in the network and the underlying game: ),( iii ags = , where 

Ggi ∈  and },{ YXai ∈ in Γ . The player’s total payoff consists of the payoff she obtains 

from playing the underlying game with her neighbors minus the costs of her links. In formal 

terms, in the social game SΓ , given the strategies of the other players 

),...,,,...,( 111 niii sssss +−− = , the payoff of player i  from playing some strategy ),( iii ags =  is 

),(),(),( ii
Nj

jiiii nnaass
i

φπ −=Π ∑
∈

− . 

 

3. Stages in modeling social games 

 

The two components of the social game imply four distinct aspects of the coevolution process 

that need to be modeled: how links are formed, how the underlying game is played, what the 

sequence of link and action decisions is and when equilibrium/stability is reached. In what 

follows, I review the approaches and concepts available at each of these four modeling stages. 

The goal is to both flesh out the general framework presented above and systematically 

reconstruct the models in the coevolution literature in terms of assumptions and variables (see 

Table 2), which will enable the subsequent analysis of their results.   

 

3.1. Link formation 

 

3.1.1. Definition of links 

 

Coevolution models borrow from the strategic-networking literature two different approaches 

to defining links: unilateral link formation (Bala and Goyal, 2000) and bilateral link formation 

(Jackson and Wolinsky, 1996). The two approaches do not necessarily lead to the same 

predictions. They also apply to different social situations and may involve the use of different 

equilibrium/stability concepts. 

In unilateral link formation, a link ij  is formed whenever 1},max{ =jiij gg , that is, if at 

least one of the players wants to establish the link. Thus, i ’s interaction neighborhood is 

defined by },max{ jiijij ggg =  and hence, the players to whom i  has proposed a link are only 
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a subset of the players with whom i  interacts: ii NN ⊆ . This definition of links is suitable to 

applications where all types of interactions are profitable (as a rational player would always 

accept a proposed link because she would lose payoff otherwise) and is usually used to model 

situations where links are costly only for one of the partners. The assumption of unilateral link 

formation is also methodologically advantageous: it simplifies the analysis because it allows 

for the use of best-response strategy at the individual level and (strict) Nash equilibrium at the 

collective level (see section 3.4.1 for definitions). 

In bilateral link formation, a link ij  is formed whenever 1},min{ =jiij gg , or if and only if 

both players want to have the link. Correspondingly, i ’s interaction neighborhood is 

},min{ jiijij ggg =  and the players in it are only a subset of those to whom i  would like to 

link: ii NN ⊆ . This approach to defining links implies that although each player can 

unilaterally sever any of her links, the mutual consent of both players is required in order for a 

connection to exist. Initially developed in the context of cooperative games, bilateral link 

formation has required the definition of additional stability concepts: pairwise stability 

(Jackson and Wolinsky, 1996), strong pairwise stability (Gilles et al., 2006) and unilateral 

stability (Buskens and Van de Rijt, 2008). However, the assumption that the network game is 

of the cooperative type is not needed if the link decisions are considered to be independent. 

Furthermore, such an assumption is unjustified in social games, given that the underlying 

game is assumed to be non-cooperative. Hence, coevolution models with bilateral link 

formation have employed both the Nash equilibrium and stability concepts based on pairwise 

stability (discussed in section 3.4).   

 

3.1.2. Cost functions for links 

 

The relative cost of links (in relation to the payoffs of the underlying game) changes the 

incentives at the individual level and carries major implications for both the network structure 

and the global behavior in the stable states. Link costs can represent the information costs in 

finding a partner and establishing a contact (costs for initiating a link), the time and effort 

involved in communication (costs for maintaining a link), as well as the disutility from 

terminating a relationship (costs for breaking a link). Additionally, costs can be either shared, 

or incurred by one party only (usually, the initiator of the link). The major difference between 

the two is that one-sided link costs bring forth an externality issue: a player may benefit from 

a connection even if she does not pay for it.  
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Despite the numerous options, all existing models in the literature assume costs for link 

maintenance. In addition, models with unilateral link formation always use one-sided costs for 

the link-initiator (e.g. Berninghaus and Vogt, 2003; Bramoullé et al., 2004; Goyal and Vega-

Redondo, 2005), while models with bilateral link formation assume that both partners pay for 

the link (e.g. Droste et al., 2000; Buskens et al., 2008). 

Apart from deciding who pays the link costs, it is also important to define what the costs 

look like. For example, links can have the same cost regardless of the number of partners one 

already has ( ikn=φ  if costs are incurred by the link initiator and ink=φ  if costs are shared, 

0>k ). Special cases of a linear cost function for links are when costs are zero (equivalent to 

a shift in payoffs )( k−π  where )min(π<k ) or when one is compensated for any ties not 

formed ( )( innk −−=φ ). Although the latter case is typically used in experimental settings to 

guarantee a minimum compensation to all participants, it could also be applied to study 

exclusion (Riedl and Ule, 2002).  

The assumption of constant costs implies that one can maintain an unlimited number of 

partnerships, as long as they are profitable. However, a more realistic assumption would be 

that after a certain number of relationships, it becomes unfeasible to maintain additional ones. 

This idea has been modeled in two different ways (illustrated here for two-sided linking): by 

imposing a threshold m , where 1>> mn  and such that )max()( πφ >in  for all mni >  

(Jackson and Watts, 2002), or by specifying increasing marginal (i.e. convex) costs 
2

ii nlnk +=φ  with 0, >lk  (Jackson and Watts, 2002; Buskens et al., 2008) or more generally, 
λφ ink=  with 0>k  and 1>λ  (Hanaki et al., 2007).  

 

3.2. Playing the game 

 

After the interaction network is established, actors play the same underlying game with each 

of their partners. All reviewed social-game models assume that players employ the same 

action in all of the bilateral games they are simultaneously engaged in. I elaborate on how this 

assumption relates to applications and affects results in the final section. In what follows, I 

briefly present the applications and the equilibrium solutions of the three games most 

commonly used to model problems of cooperation and coordination: Coordination Game,2 

                                                 
2 In order to simplify the analysis, I focus only on pure coordination games. Another game which is commonly 
used to represent problems of coordination is Stag-Hunt. Within the coevolution framework, there are two 
prominent studies of this game: a simulation-based analysis by Skyrms and Pemantle (2000), seminal in the 
modeling of endogenous dynamic network structure, and an experiment by Corbae and Duffy (2008). Skyrms 
and Pemantle assume memory-based learning and use reinforcement-based dynamics, while Corbae and Duffy 
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Prisoner’s Dilemma and Hawk-Dove Game. Table 1 gives the payoff matrices, the strategies 

and the outcomes of the one-shot symmetric two-player two-action games in normal form.  

 
TABLE 1 

GAMES OF COOPERATION AND COORDINATION * 

 Coordination Game Prisoner’s Dilemma Hawk-Dove Game 

Matrix 
 X Y 

X b,b e,d 
Y d,e c,c  

 X Y 
X c,c e,b 
Y b,e d,d  

 X Y 
X c,c d,b 
Y b,d e,e  

Pure Strategies X 
Y 

X: cooperate 
Y: defect 

X: dove 
Y: hawk 

Pure-Strategy 
Nash Equilibria 

(X,X) 
(Y,Y) (Y,Y) dominant (X,Y) 

(Y,X) 

Mixed-Strategy 
Nash Equilibria ecdb

ec
X −+−

−
=ρ   

edcb
ed

X −+−
−

=ρ  

Pareto Optimal 
Outcomes (X,X) 

(X,X) 
(X,Y) 
(Y,X) 

(X,X) 
(X,Y) 
(Y,X) 

 (X,X) if 2c ≥ b + d 
(X,Y) Maximum 

Welfare (X,X) (X,X) if 2c > b + e 
(Y,X) if 2c ≤ b + d 

Additional 
Constraints 

If c + d > b + e : 
(X,X) payoff-dominant 

(Y,Y) risk-dominant 
  

*  b > c > d > e 

 

 

3.2.1. Coordination Game 

 

In the Coordination Game, the two players realize highest gains only when they choose the 

same action. The game has two Nash equilibria in pure strategies and one in mixed strategies. 

The pure-strategy equilibria always Pareto-dominate the mixed-strategy one. In order to 

further problematize the welfare implications, it is often assumed that the two pure-strategy 

equilibria are Pareto-ranked themselves: in Table 1, {X,X} is the payoff-dominant 

equilibrium and {Y,Y} – the inefficient. The game also has a risk-dominant equilibrium in the 

sense that each player chooses the strategy that is a best response to the other player mixing 

with equal probability. When the efficient action is the more risky one, reaching a socially 

optimal outcome becomes even more problematic and the coordination problem turns into a 

                                                                                                                                                         
model the social game as a game with incomplete information and employ perfect Bayesian equilibrium 
solutions.   
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social dilemma. Thus, although most commonly associated with the evolution of conventions 

(such as languages, currencies, product standards, etc.), the game has been used to model the 

dilemma of collective action as well (Heckathorn, 1996). 

 

3.2.2. Prisoner’s Dilemma 

 

The Prisoner’s Dilemma is an extreme example of a situation in which individually-rational 

decisions lead to suboptimal outcomes at the collective level. Players have a choice between 

two actions, “cooperate” and “defect”, but whichever action one of the players chooses, the 

other one is always better off if she defects. Thus, although cooperation yields the maximum 

mutual benefit, defection is a dominant strategy and the Nash equilibrium predicts that both 

players defect.  

 

3.2.3. Hawk-Dove Game 

 

The Hawk-Dove Game (also known as Chicken Game) is a game that combines both the 

coordination and the cooperation problem. Maynard Smith (1973) famously introduced the 

game in the field of evolutionary biology to model individual selection within species and 

used it to develop the concept of evolutionary stable strategies. He suggested an interpretation 

in terms of competition for territory or resources. If the two players cooperate (Doves), they 

divide the resource equally among themselves; if one individual acts aggressively (Hawk), she 

either receives most of the resource if her opponent retreats (Dove) or they both end up with a 

minimum payoff due to an ensuing fight (Hawk-Hawk).   

In the Hawk-Dove Game, one’s best response is to choose an action unlike the action of 

one’s partner. Hence, the only Nash equilibria in pure strategies are the asymmetric strategy 

configurations (Hawk, Dove) and (Dove, Hawk); the only symmetric equilibrium is the 

mixed-strategy equilibrium. If dbc +>2 , reciprocated Dove-behavior yields the highest 

combined benefit. However, mutual cooperation is never an equilibrium and this presents a 

social dilemma. If the opposite is true ( dbc +<2 ), dissimilar actions yield highest total 

benefit. This presents a coordination problem, aggravated by the fact that both players’ failure 

to yield (reciprocated Hawk-behavior) is disastrous. Because of these properties, the game has 

been used to represent brinkmanship and appeasement (Rapoport and Chammah, 1966), 

conflict (Bornstein et al., 1997) and collective action (Heckathorn, 1996). 
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3.3. Sequence of choices 

 

After determining how players form links and choose actions, it is important to decide in what 

order they take these two decisions. One approach is to model the partner and action choices 

as simultaneous: actors choose the type of change (a link, behavior, or a combination of the 

two) that provides the highest payoff. This approach applies to both static models (assuming a 

one-shot social game SΓ ) and dynamic models (using a repeated SΓ ). Assuming 

simultaneous link and action changes is particularly suitable for situations with well-informed 

players interacting in small networks. In fact, such players should also be capable of looking 

one step further to the implications of their decisions for the future evolution of the play. 

Thus, the simultaneous consideration of network and action decisions allows for modeling 

forward-looking behavior in social games (see Berninghaus et al., 2008).  

The other possible approach is to assume that link and action choices are taken in a certain 

sequence. The assumption represents players in larger networks who have limited and local 

information. The approach requires a dynamic framework of discrete time and hence, it is 

most commonly used in simulations. At every period of the dynamic social game, three events 

happen:  

• a random pair of players is chosen with a probability 0>ijp  and the two actors decide 

whether they want to add or remove a link between themselves;  

• a random player is chosen with a probability 0>iq  and the player decides whether to 

change her behavior;  

• all players play the game and obtain their payoffs.  

These events may occur in any order at the modeler’s discretion. The most noteworthy 

implication from assuming separate link and action choices, however, is that ijp  and iq  can 

be varied independently, thus modifying the “speed” of network updates relative to the 

frequency of action updates. This allows us to model the volatility of social relations (related 

to, for example, geographical mobility) in a simulated society. 

 

3.4. Equilibrium/Stability 

 

To define the theoretical solutions to the social game, static models usually employ the Nash 

equilibrium or refinements and extensions of it. Dynamic models, regardless of whether they 

assume simultaneous or sequential link and action choices, typically rely on stability 

concepts.  
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3.4.1. Equilibrium concepts 

 

Best response is a strategy that produces the most favorable outcome for a player, taking other 

players’ strategies as given. This concept is central to the definition of Nash equilibrium: in a 

Nash equilibrium, each player has selected the best response to the other players’ strategies. 

Thus, no player has an incentive to change strategy. Formally, a strategy profile 

),...,( 1
∗∗∗ = nsss  is a Nash equilibrium of SΓ  if Ni∈∀  and ii Ss ∈∀ , ),(),( ∗

−
∗
−

∗ Π≥Π iiiiii ssss . 

The solutions predicted by this concept can be narrowed down by changing the inequality in 

the definition to a strict one. This refinement is known as strict Nash equilibrium and in it, 

every player gets a strictly higher payoff with her current strategy than she would with 

another one available. 

Extensions of the (strict) Nash equilibrium concept can come from different behavioral 

assumptions. For example, in order to better explain their experimental results, Berninghaus 

et al. (2008) replace the common assumption of myopic behavior3 with forward-looking 

belief-formation. They extend the static-game Nash equilibrium to “one-step-ahead” stability 

(see Berninghaus et al., 2008 for definition). Although this concept implies a repeated game, 

dynamic models usually employ an entirely different approach to defining stability.    

 

3.4.2. Stability concepts 

 

In dynamic models, the link and action update mechanisms define an evolutionary process. 

Starting from an initial state with random distribution of links and behavior, the feedback 

between partner and action choices results in a dynamic evolution that converges on any of a 

finite number of possible stable states, i.e. states in which both the neighborhood and the 

behavior of each agent do not change over time. Formally, the stable states in a dynamic 

social game are states in which: 

• no player wants to sever a link or change action, and 

• no player wants to establish a link (if the link formation is unilateral) or no pair of 

players wants to establish a mutual link (if the link formation is bilateral).4  

A dynamic system can have a large number of stable states. Which one is more likely 

depends on the system’s initial state. Hence, the probability of a particular outcome can be 

statistically estimated over a sample of initial configurations.  
                                                 
3 In the context of coevolution games, myopic actors optimize under the assumption that the network and the 
behavior from the previous period remain the same in the current period. 
4 The stability concept for social games with bilateral link formation corresponds to Jackson and Wolinsky’s 
(1996) pairwise stability for networks where only links can be changed. 
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One common way to refine the set of predicted stable states is to use the concept of 

stochastic stability.5 Stochastic models assume trembles in the players’ decisions due to 

external perturbations, limitations in the player’s calculative ability, experimentation or 

simply mistakes in executing the best-response strategy.6 Models with sequential link and 

action decisions allow the errors for the two to be independent: the action is correctly 

implemented with probability ε−1 , while the link – with probability τ−1 , where 

0,1 >> τε .7 Models with simultaneous link and action update assume that the player 

implements her best-response strategy in the social game with probability η−1 , where 

01 >> η . A state is stochastically stable if the probability that the system will be in that state 

in the long run is bounded away from zero as the error probabilities become infinitely small 

(Foster and Young, 1990). In practical terms, the higher the number of mistakes needed for 

the system to leave a stable state, the more stochastically stable that state is. Thus, the 

introduction of mutation rates in the dynamic process leads to more precise long-run 

predictions. 

 

4. Social games of coordination and cooperation 

 

In the previous two sections, after outlining a common framework for social games, I 

reviewed how models differ in link definition, link costs, payoffs of the underlying game, 

sequence of choices, and equilibrium/stability concepts. In each of the existing models, 

researchers fix some of these parameters as assumptions and explore the effects from varying 

the rest. Table 2 summarizes the assumptions, variables, and results of the models in the 

literature.  

In this section, I link the model parameters to the macro-outcomes. I concentrate on the 

network, the global behavior and the specific network-behavior patterns in the stable 

configurations of the social games. I discuss the outcomes in terms of efficiency, payoff 

distribution, role differentiation, hierarchical structuring, network density, segregation, and 

polarization – all aspects that in one way or another relate to the three major themes of 

sociology, namely, inequality, rationalization, and cohesion. 

                                                 
5 For models with bilateral link formation, another way to narrow down predictions is to combine the 
requirement of stability in behavior with one of the refinements of pairwise stability: strong pairwise stability 
(Gilles et al., 2006) or unilateral stability (Buskens and Van de Rijt, 2008). 
6 Technically speaking, the random mechanism for updating links and actions introduces a stochastic element to 
all dynamic models. 
7 Among the reviewed models, only Hojman and Szeidl (2006) model the two error probabilities as related: the 
probability for making a mistake in the linking decision is τε . This implies that the link and action mistake 
probabilities approach zero at different rates, which changes the results significantly (Bergin and Lipman, 1996). 
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TABLE 2 
COEVOLUTION OF BEHAVIOR AND STRUCTURE IN GAMES OF COOPERATION AND COORDINATION a 

Study Type c ijg  φ  Sequence of 
Choices 

Equilibrium/ 
Stability 

Behavioral 
Assumption Variables Results e Network and Global 

Behavior f 

Coordination          
b/γ ≥ kij X--X ↑efficiency 

Y--Y  deterministic c/γ ≥ kij X–X   Y–Y segregation Droste et al., 2000 An min{gij,gji} ∑
∈ iNj

ijk
d 

gij → ai,aj → s 
stochastic 
τ, ε > 0 

myopic BR 

c/γ ≥ kij Y--Y ↓efficiency 

b > k > d,  
ρY > 1/(n-1) X–X  

b > k > c,  
ρY ≤ 2/(n-1) Y   Y  ink  

c > k Y–Y  
b > k > d X--X  
c > k > d Y--Y  

Jackson & Watts, 
2002 An min{gij,gji} 

ink , 
mni ≤  

gij → ak → s stochastic 
τ, ε > 0 myopic BR 

d > k Y-m-Y  
b > k X–X 

b > k > c Y   Y ↑efficiency 

c > k  Y–Y  
c > k > d X–X   Y–Y segregation 

Berninghaus & Vogt, 
2003 An max{gij,gji} ikn  static Nash myopic BR 

d > k > e X–X–>Y–Y  
c > k* > e   

k > k* X–X ↑efficiency Goyal & Vega-
Redondo, 2005 An max{gij,gji} ikn  simultaneous stochastic 

η > 0 myopic BR 
k* > k Y–Y ↓efficiency 
k ≈ 0 Y–Y wheel  

Y–Y wheel  Hojman & Szeidl, 
2006 b An max{gij,gji} ikn  simultaneous stochastic 

ετ, ε > 0 myopic BR k ≈ 0, 2<∑
∈ iNj

ijg  
X–X wheel  

[n/2] gij → ak ↑polarization 
segregation ↓nX ↑polarization 

density ↓polarization 
nX 

density.nX 

Buskens et al., 2008 Sim min{gij,gji} 2
ii nlnk +  

s → gi | ai 
s → gij → ak 

s → [n/2] gij → ak

deterministic myopic BR 

n↓ 

X--X 
Y--Y 

X--X   Y--Y ↑nX  

nX ↑efficiency Corten & Buskens, 
2008 Exp min{gij,gji} 2

ii nlnk +  n gij → a → s deterministic myopic BR density 
 

X-m-X 
X–X   Y–Y 

Y--Y 
↓efficiency 
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Prisoner’s Dilemma          
exclusion   nX > 0 

e > k X--X--Y--Y ↑density global info c > k > d X--X - Y--Y ↑nX ↑density 
e > k X--X--Y--Y ↑density 

Riedl & Ule, 2002 Exp min{gij,gji} )( innk −−  simultaneous 
Nash, 

Subgame 
Perfect local info c > k > d X--X   Y ↓density ↑segregation 

imitation   
pij = 0, b↑ ↓nX random search pij >> 0, b↑ ↑inequality ↑hierarchy Eguíluz et al., 2005 Sim max{gij,gji} 0 s → a → gunsatisfied Y deterministic 

local search pij > 0 

Y--X--X--Y 
Y--Y 

small-world 
n↑  ↑nX 

k,λ↑  ↑nX ↓density 
k,λ↑ β/α↑  ↑nX 

k,λ↑ local search↑  
Hanaki et al., 2007 Sim min{gij,gji} λ

ink  s → αai → βgjk 
stochastic 
τ = ε > 0 

imitation 
local + random 

search 
k,λ↑ b↑  ↓nX 

r = 2 X--X--Y--Y  

r ≥ 2 X--X   Y--Y 
Y--Y segregation 

r > 2, β↑  ↑nX 

Mengel & Fosco, 
2007 b Sim min{gij,gji} 0, mni ≤  ai → βgjk → s stochastic 

τ, ε > 0 

imitation 
local search 
(radius r) 

r↑  ↓clustering ↓avg. distance 

Hawk-Dove          
X   X b > k > c Y–>X n ≥ nY ≥ 0 ↓density 

c > k > d Y–>X–X n ≥ nY ≥ (n-1)ρY 
d > k > e Y–X–X ↓nY 

Berninghaus & Vogt, 
2003 
 
Bramoullé et al., 2004

An max{gij,gji} ikn  static Nash myopic BR 

e > k Y–Y–X–X (n-1)ρY + 1 ≥ nY ≥ (n-1)ρY 
↑density 

b > k > c Y–>X 
d

nn
d
dn

Y +Δ
Δ−

≥≥
+Δ
+Δ )1(  

c > k > d  Y–>X–X 0)(
≥≥

+−
+−

Yn
dcb

dcbn  

d > k > e Y–X–X ↑nY 

Berninghaus et al., 
2008 Exp max{gij,gji} ikn  simultaneous one-step-ahead 

forward-
looking belief 

formation 

e > k Y–Y–X–X (n-1)ρY + 1 ≥ nY ≥ (n-1)ρY 

a.  For notation used, see text and Table 1. 
b.  Interaction with both direct and indirect neighbors. 
c.  An  analytical study; Sim  simulation; Exp experiment 
d.  { }nijijkij +−−= γγ ,min , where γ  is the cost per distance unit (players are distributed on a circle) 
e.  Y--Y  links between Y-players; X–X  complete network between X-players; X - Y  rare links between X-players and Y-players; X–>Y  X-players linked to Y-players 
f.   nX  with some abuse of notation, the proportion/number of X-players; Δ  (b-k) 
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4.1. Coordination Game 

 

If individuals play the Coordination Game with partners selected at random from the 

population, the only stochastically stable equilibrium is the risk-dominant strategy profile 

(e.g. Young, 1993). This result is due to the fact that the risk-dominant strategy yields the 

highest payoff against an average population: it is a best response if the fraction of the 

population playing the same strategy is 
ecdb

db
−+−

−  (the mixing probability for action Y in 

the mixed-strategy equilibrium), which is always less than 0.5. When players can strategically 

choose their partners, however, coordinating on the Pareto-efficient equilibrium is possible. 

What is more, different parts of the population can simultaneously coordinate on different 

equilibria.  

One factor that increases the likelihood of Pareto-efficient coordination is the proportion 

of players choosing the payoff-dominant strategy in the initial stage of the social game. This 

effect has been obtained in simulations (Buskens et al., 2008) and confirmed in an experiment 

(Corten and Buskens, 2008). Analytical studies have explored another factor that facilitates 

efficiency: the cost of links. Coordination on the payoff-efficient equilibrium is the only 

possible solution in a connected network if the link costs are high enough, i.e. ckb >>  

(Droste et al., 2000; Berninghaus and Vogt, 2003). In this case, playing the inefficient 

equilibrium does not pay off after subtracting the communication costs. For lower link costs, 

efficiency is possible but not guaranteed in deterministic and static models. Moreover, below 

a certain cost threshold ∗k , ekc >> ∗ , efficiency is not stochastically stable (Jackson and 

Watts, 2002; Goyal and Vega-Redondo, 2005). The intuition behind this last result is that 

when link costs are low, the players are maximally connected and the situation resembles the 

base case with random interaction: more than half of one’s partners need to randomly switch 

to the efficient action in order for one to do so rationally. Yet, efficiency is also not 

stochastically stable when interaction is restricted. For example, the model of Droste et al. 

(2000) localizes interactions by assuming costs based on geographical distance. In the 

resulting neighborhood-structured networks, the risk-dominant convention is the only 

stochastically stable state.  

Stochastic models show that the social game of coordination converges to a state where all 

players behave uniformly. However, the coexistence of both equilibria is theoretically 

possible for low link costs in deterministic environments (Droste et al., 2000; Buskens et al., 

2008) and in static models (Berninghaus and Vogt, 2003). It is also experimentally observed 

(Corten and Buskens, 2008).  
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Since miscoordination is costly, the coexistence of equilibria implies that ties will occur 

mainly between actors with the same behavior. The segregation of the network does not have 

to be complete only when link costs are one-sided and low enough (Berninghaus and Vogt, 

2003). In this case, it is still profitable for X-players to sponsor connections to Y-players. 

When the network is segmented into components, it is also important to know to what 

extent the separate groups are of similar size. Buskens et al. (2008) conceptualize this as 

polarization and find out that polarization is both more likely and more extreme for “faster” 

networks (models with link updates for n/2 randomly selected pairs at every period rather than 

a single link update). The large number of link changes causes the network to fall apart into 

groups with different behavior before the actors get a chance to adapt their behavior. 

 

4.2. Prisoner’s Dilemma 

 

If players use best response in a repeated Prisoner’s Dilemma, the Nash equilibrium predicts 

universal defection, as defection is the dominant strategy. Non-trivial solutions require 

additional behavioral assumptions such as imitation learning (emulating the action or link 

choices of successful players), informed partner search8 (using heuristic rules to find partners 

who are likely to cooperate), and optional participation (avoiding defectors). Imitation, 

however, affects cooperation in both directions: while it enables individual cooperation, it 

precludes full cooperation as a global outcome. Firstly, since unilateral defection is the most 

profitable action choice, if players imitate those with highest payoffs, defectors are likely to 

survive under deterministic dynamics. In addition, because a single random mistake could 

lead to the viral replication and spread of defection, full cooperation is not stochastically 

stable either. 

Nevertheless, in social games, the global level of cooperation could increase under 

specific conditions. In their simulation study, Mengel and Fosco (2007) find that when 

players interact more often among each other, they begin to exclude defectors often enough to 

compensate for the also increased tendency to emulate them. Thus, given that their search 

radius is large enough, the more often players update their link choices, the higher the number 

of cooperators. Hanaki et al. (2007) reproduce the finding that higher relative network speed 

increases the global level of cooperation in a simulation model that assumes that linking costs 

are high enough. 

Riedl and Ule’s experiment (2002) confirms that cooperation is significantly higher when 

players have the option to reject partnership offers. Experiment subjects use exclusion as 
                                                 
8 All dynamic models assume random global search for partners: the link update process. 
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punishment: they tend to reject links with known defectors much more often than with 

cooperators and what is more, they do this even when it is costly. The effect from exclusion 

on cooperation is particularly strong when the exclusion option is cheap (which could be seen 

as equivalent to high link costs) and when players observe the behavior of all other players 

(they have global information). Since the threat of exclusion is more credible in such a 

situation, experiment subjects tend to cooperate more. Yet, in simulations, agents are rarely 

endowed with such foresight. Nevertheless, the numerical experiment of Hanaki et al. (2007) 

confirms exclusion as the mechanism that fosters cooperation when linking costs are high. In 

this case, rather than to discourage defection, the role of exclusion is to stem its spread 

through imitation.   

If players tend to exclude defectors, one can expect that the higher the number of 

cooperators, the higher the density of the resulting interaction network. In their experiment, 

Riedl and Ule (2002) find out that network density is indeed positively correlated with 

cooperation but only when exclusion is cheap (or alternatively, maintaining links is costly).   

The successful isolation of defectors can further lead to segregation, that is, the 

segmentation of the network into components consisting of either only cooperators or only 

defectors. In Mengel and Fosco’s model (2007), segregation occurs when players have some 

(but not global) information beyond their interaction radius. Here, the localization of 

information has a twofold effect: on the one hand, it allows defection to spread locally and to 

destabilize some cooperative components and on the other, it also enables cooperators to find 

and connect to other cooperators and hence, to exclude defectors from their cooperative 

clusters. As such complex dynamics are missing in Riedl and Ule’s six-person experimental 

groups (2002), the researchers discover another mechanism that enables segregation. When 

information is limited to one’s interaction partners only and exclusion is cheap, segregation 

occurs because isolated defectors are not aware that a cooperative clique exists. 

Cooperation can be maintained not only through the isolation of defectors but also 

through their marginalization. The resulting structure is a connected hierarchical network with 

a large number of cooperators in the center and a few defectors at the fringes. Two available 

simulation studies obtain this kind of structures. On the one hand, Eguíluz et al. (2005) use a 

deterministic model in which only newly converted defectors randomly search for new 

partners. They find out that the hierarchical structure gets accentuated (the degree distribution 

significantly departs from the Poisson distribution of a random network towards an 

exponential one) with increasing network fluidity and increasing temptation to defect. In 

comparison, in Mengel and Fosco’s stochastic model with local partner search (2007), 

connected hierarchical networks are possible only when players choose partners among 
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“friends of friends” (search radius 2=r ). Since in this case one’s neighbors are likely to be 

also related, the global structure exhibits high clustering, yet a short average distance between 

nodes, a type of network known as a “small world” (Watts and Strogatz, 1998). Although 

their model differs in a number of assumptions, Eguíluz et al. (2005) also obtain the same 

result when they specify local search.   

The fact that players with different behavior occupy different positions in the hierarchical 

network implies that they assume different roles. Depending on who imitates whom, Eguíluz 

et al. (2005) differentiate three roles: leaders (highly connected cooperators who have the 

highest payoff in their neighborhood), conformists (cooperators who imitate leaders) and 

exploiters (defectors marginalized to the periphery who are not imitated by anyone). Since 

one’s payoff in the social game depends on the number of one’s partners, as well as their 

behavior, the role-differentiation implies inequalities in the distribution of payoffs. The 

leaders have the highest payoffs because they are involved in a large number of cooperative 

interactions. The conformists receive less because they cooperate with fewer partners and are 

possibly also exploited by defectors. Yet, the average payoff of defectors is larger than the 

average payoff of cooperators. Nevertheless, due to the small number of defectors in stable 

states, Eguíluz et al. (2005) observe that the payoff distribution closely follows the degree 

distribution, i.e., it is exponential. Hence, just like hierarchization, inequality increases when 

the network becomes more fluid and/or defection becomes more tempting.  

 

4.3. Hawk-Dove Game 

 

The Hawk-Dove Game combines the coordination and cooperation problems of the previous 

two games, as well as their specificities concerning equilibrium selection: like the 

Coordination Game, it allows for non-trivial analytical solutions but similarly to the 

Prisoner’s Dilemma, it requires additional assumptions to explain the high levels of 

cooperation observed empirically. 

In the social game of Hawk-Dove, the predicted Nash equilibrium configurations do not 

generally coincide with the states that provide maximum welfare (in the sense of the 

maximized sum of individual payoffs). When the game represents a cooperation dilemma 

( dbc +>2 ), the most efficient state is a complete network with only Doves but, as in the 

Prisoner’s Dilemma, this state is never a Nash equilibrium. When the game represents a 

coordination dilemma ( dbc +<2 ), the number of Doves in the socially optimal states is a 

function of the payoffs and the link costs but is always between and including 2/n  and n  

(Bramoullé et al., 2004). Generally, the Nash equilibrium predictions are not unique but as 
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link costs decrease, the interval of possible Hawk-Dove configurations narrows down to the 

mixed-strategy equilibrium point (see Table 2). The intuition behind this is that when link 

costs are low, players have the incentive to form a complete network and hence, the link 

formation process no longer influences behavior. Thus, in contrast to the Coordination Game, 

where efficiency is certain only for high link costs, in Hawk-Dove, more efficient equilibria 

are only guaranteed for low link costs.  

In contradiction to the analytical predictions, Berninghaus et al. (2008) find out that 

subjects in experiments exhibit high levels of cooperation. In order to account for this 

observation, they assume that the players are forward-looking and define a “one-step-ahead” 

stability concept. The concept generally predicts a higher number of cooperators than in the 

Nash equilibria and even some socially optimal states if link costs are sufficiently high 

( ckb >> ). 

With regards to the interaction pattern in stable states, the payoff asymmetry in the Hawk-

Dove Game generally leads to incomplete network structures. The theoretical prediction is 

that network density decreases with an increase in link costs. When costs are low, any kind of 

interaction is profitable so players form the complete network. When costs are high 

( ckb >> ) and one-sided, Hawks can maintain links with Doves but not vice versa. Since 

links between players employing the same strategy are also not profitable, the resulting 

network is bipartite. The predicted negative relation between link costs and network density 

has also been confirmed empirically (Berninghaus et al., 2008). 

The particular situation with unilateral link-formation and high link costs also carries 

implications for inequality. Doves earn more than Hawks but their high payoffs depend on 

Hawks paying the links: if everybody is a Dove, no connections will be established and 

everybody’s payoff will be zero. Thus, in this case, the roles reverse and Doves become the 

exploiters. 

Apart from role-differentiation, high link costs can also give rise to complex reciprocity 

patterns. Berninghaus et al. (2008) observe two particular configurations among their 

experiment subjects: bilateral sequential sponsoring (taking turns to pay for the 

communication costs) and circular sponsoring among three or more Doves. Essentially, 

limited opportunities to earn a positive payoff can instigate people to coordinate on more 

complex forms of cooperation.  
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5. Discussion and conclusion 

 

By analyzing existing models, isolating their parameters and then linking them to macro-level 

outcomes, this paper attempted to answer the question of how the coevolution of networks 

and cooperation or coordination can be modeled. The analysis revealed that the most 

commonly studied parameters are the cost of links relative to the payoffs of the underlying 

game and the frequency with which players change partners rather than action. Analytical 

predictions, simulation results, and experimental findings all suggest that the outcomes are not 

always efficient and almost never unique. Nevertheless, certain trends have become apparent. 

Firstly, high link costs decrease network density. This is an intuitive result: the more 

expensive links are, the less links one is willing to maintain. In addition, however, depending 

on how the link costs relate to the payoffs of the underlying game, individual incentives 

change and lead to different predictions on welfare at the macro-level. For example, in the 

Coordination Game, high link costs guarantee efficiency, while in the Hawk-Dove Game, 

only low link costs guarantee Nash equilibria closer to the socially optimal outcome. The 

experiments on cooperative games also confirm that the cost of links carries major 

implications for efficiency: the number of cooperators is significantly higher for high link 

costs in both Hawk-Dove and the Prisoner’s Dilemma (in the latter case, provided that players 

have global information).  

Secondly, “faster” networks lead to more dramatic macro-patterns. In simulation studies, 

the faster the speed of network update relative to the speed of action update, the higher the 

level of polarization in segregated networks and the higher the degree of inequality in 

connectivity and payoffs in connected networks. Faster networks also enhance efficiency in 

the Prisoner’s Dilemma if players have big information radii.9 

The effect of the dynamics of the link update process, however, is conditional on the 

assumption that actors do not discriminate in action choice among their partners. When one 

uses the same action against everybody one is connected with, changing one’s behavior has 

bigger consequences than changing a tie. This is because a link change affects only a single 

interaction while a behavior change affects all of one’s interactions. Thus, since actors tend to 

exhibit a certain inertia in behavior, when they update their links more often, their action 

choices accumulate and persist to greater degree and hence, more extreme structures are 

produced.  

                                                 
9 Analogously, in their model of Stag-Hunt with endogenous partner selection, Skyrms and Pemantle (2000) 
explore two different probabilities for the random selection of a player to change her strategy to the most 
successful one. They find out that the slower strategic adaptation (i.e. the faster network) leads to coordination 
on the payoff dominant strategy. 
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Since the assumption of non-discriminatory action is common to all reviewed studies, I 

did not discuss it in the section on how to build a coevolution model. However, as it might 

lead to an overestimation of the effect of network fluidity on macro-level outcomes, it 

deserves special attention. Before I can conclude with some general remarks and suggestions 

for further research, I elaborate on the origin of this assumption and possible consequences 

from relaxing it. 

 

5.1. Assumption of non-discriminatory action choices 

 

Researchers commonly justify the assumption of non-discriminatory action choices as the 

very condition that enables network effects (e.g. Riedl and Ule, 2002; Bramoullé et al., 2004; 

Goyal and Vega-Redondo, 2005). A player’s action change triggers a reaction by her direct 

neighbors, which in turn affects the neighbors’ neighbors. This allows for cascade dynamics, 

where a single individual’s action choice propagates through the system and radically alters 

the global behavior. However, individual adjustments in the interaction network could stop 

such extreme network dynamics and produce more complex self-organization patterns. 

The assumption of actors employing the same action towards all their neighbors can be 

traced back to one of the predecessors of behavior-network coevolution research, namely, the 

study of cellular automata.10 The assumption is also conventional in evolutionary game 

theory, which studies strategy drifts in populations. Originally developed in computability 

theory and evolutionary biology, respectively, these two research areas focus on actor states 

or types, rather than on actions or relations. In the social sciences, the assumption of non-

discriminatory action choices is justifiable in (anti-)coordination games applied to personal 

characteristics that are costly to be “customized” per interaction, such as political views or 

professional specialization. However, non-discriminatory action is a strong behavioral 

assumption as far as cooperation is concerned: most of us have both profitable and adverse 

relationships. Allowing players to behave differently with each partner offers not only more 

socially realistic models, but also new directions for research. 

 

5.2. Discriminatory action choices 

 

Introducing relationship-specific actions to social games shifts the research focus from long-

term population evolution to short-term group dynamics. This shift implies new substantive 
                                                 
10 A cellular automaton is a model of a fixed grid of cells, where each cell has a finite number of states and 
where the cell’s current state depends (following a simple universal rule) on the states of the cell’s neighbors in 
the previous time period. 
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questions, new equilibrium predictions, and more complex behavioral patterns in 

experiments.  

First, the assumption of discriminatory action choices allows us to re-investigate the 

question whether positive or negative sanctions facilitate cooperation and coordination. If 

players can behave differently with different partners, they can punish exploitative actors 

through costly miscoordination or defection. In comparison, the current models allow only for 

punishment through exclusion and in order to render it costly, they need to introduce 

additional payoff conditions (see for example, Riedl and Ule, 2002). Discriminatory action 

choices enable us to use social games to re-examine not only the effect of costly punishment 

on cooperation, but also the role of direct and indirect reciprocity. Corten and Cook (2008) 

provide a first attempt in this direction: they model players who reciprocate the behavior 

expected from their partners, where the players’ expectations are based on own previous 

experience and information from third parties (i.e. reputation). The possible conflict between 

direct and indirect reciprocity itself raises additional research questions: How do people 

behave when someone is “nice” to them but “nasty” to their friends? Do conflicts between 

direct and indirect reciprocity lead to the emergence of group norms that induce and maintain 

more efficient outcomes? 

Second, the assumption of discriminatory actions could also lead to different equilibrium 

predictions. Goyal and Janssen’s study (1997) on non-exclusive conventions in static 

networks offers some preliminary evidence. The authors model actors on a circle who play a 

Coordination Game, in which they can adopt both actions for a certain “action flexibility” 

cost. The model predicts co-existing conventions for a certain range of flexibility costs. In 

comparison, without action flexibility, no co-existence is possible among players on a circle 

who interact locally (e.g. Berninghaus and Schwalbe, 1996). 

Last but not least, allowing players to relate differently to their partners could also allow 

us to observe more complex reciprocity patterns in experiments. Laboratory studies of 

individuals simultaneously playing multiple independent bilateral games show that 

probabilistic behavior is common in experiments (Hauk and Nagel, 2001; Bolton et al., 1998). 

Most experiment participants act differently against different partners even in the first round 

when everybody is the same ex ante. Hence, Hawk and Nagel (2001) hint that the multiple-

game technique may be useful for studying games with mixed equilibria (e.g. Hawk-Dove) in 

an experimental setting. I would take this idea one step further and suggest that 

experimentation through probabilistic choices could also allow individuals to coordinate on 

more complex time and spatial patterns of reciprocity.   
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5.3. Major gaps and directions for research 

 

Overall, the systematic overview of existing models of the coevolution of behavior and 

networks revealed few overlaps and multiple gaps in model development. These often 

frustrate attempts to draw universal conclusions about mechanisms without the specificities of 

the models. Yet, the gaps also indicate numerous areas for future theoretical and empirical 

exploration. I would like to conclude by recommending two major points that future research 

should address. 

In the first place, models should relate to applications more explicitly. Current coevolution 

research is often driven by analytical tractability rather than application-relevant or 

empirically valid assumptions. In particular, I argued that the assumption of actors employing 

the same action against all of their interaction partners corresponds neither to the nature of 

social relations, nor to the short-run group dynamics experiments test. This brings us to the 

second point: future coevolution research in the social sciences should provide more 

experimental evidence. The three analyzed experimental studies demonstrate that Nash 

solutions are poor predictors of behavior observed in the laboratory. Empirical tests serve to 

identify problems with current theories and thus, stimulate the development of more 

sophisticated models with more predictive power and more universal applications.   
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