
Chapter 7

The Contagion of Prosocial Behavior and the
Emergence of Voluntary-Contribution
Communities

Milena Tsvetkova and Michael Macy

Abstract Every day, millions of people write online restaurant reviews, leave prod-
uct ratings, provide answers to an unknown user’s question, or contribute lines of
code to open-source software, all without any direct reward or recognition. People
help strangers offline as well, as when people anonymously donate blood or stop to
help a stranded motorist, but these behaviors are relatively rare compared to the per-
vasiveness of online communities based on user-generated content. Why are mutual-
help communities far more common online than in traditional offline settings that
are not mediated by the Internet? We address this puzzle in two steps. We begin
with empirical evidence from an online experiment that tests two mechanisms for
the contagion of helping behavior: “generalized reciprocity” and “third-party imita-
tion”. We then use an empirically-calibrated agent-based model to show how these
mechanisms interact with the rivalness of contributions, that is, the extent to which
the benefit from a contribution is limited to just one beneficiary (as when helping a
stranded motorist) or benefits many people at once (as when contributing a product
review online). The results suggest that the non-rivalness of most user-generated
content provides a plausible explanation for the rapid diffusion of helping behavior
in online communities
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7.1 Introduction

The health regime we follow [1], the music we listen to [2], the new technologies
we adopt [3], the news stories we read [4], and even the likelihood that we vote in an
election [5] are all to a large degree influenced by our friends and peers. Many hu-
man behaviors spread through social contact, including some that are often assumed
to be acquired independently, such as obesity and fertility [6].

Prosocial behavior has also been shown to be contagious. Fowler and Christakis [7]
found experimental evidence that if you help someone, you not only increase the
likelihood that they help others, but that those they help will also help others, and
so on, out to three steps. Suri and Watts [8] and Jordan et al. [9] similarly found that
generous behavior was contagious at least in direct interaction. These groundbreak-
ing studies have provoked new questions. What are the mechanisms through which
prosocial behavior spreads among strangers? How do these mechanisms affect the
contagion dynamics? Can they lead to the emergence of cooperation in an initially
non-cooperating population?

7.1.1 The puzzle of online generosity

The puzzle of contagious generosity is compounded further by the emergence of
online communities with user-generated content, from open source software devel-
opment to advice forums to Wikipedia [10]. Why are mutual-help communities far
more common online than in traditional offline settings that are not mediated by the
internet?

We address this puzzle using an empirically calibrated agent based model. The re-
sults suggest that the answer may lie in the differences in the rivalness of online and
offline public goods involving anonymous contribution. Many offline public goods –
like blood donation, charities, and giving up one’s seat – are rivalrous, meaning that
the contribution transfers resources from the giver to a particular receiver. In con-
trast, many online public goods, especially in communities based on user-generated
content, are non-rival – everyone in the community can benefit from a given con-
tribution. The difference is not limited to the effect of non-rival incentives on the
independent probability of contribution by a member of the community. Computer
simulation shows that this “within individual” difference is amplified by the “be-
tween individual” effects of the contagion dynamics. More precisely, we identify
two mechanisms of contagion – “generalized reciprocity” and “third-party imita-
tion” – and show how these mechanisms interact with differences between rival and
non-rival contributions to explain the spread of helping behavior in online commu-
nities.
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Fig. 7.1: Two mechanisms for the contagion of prosocial behavior.(GR) Generalized
reciprocity: A helps B because C has helped A. (TPI) Third-party influence: A helps
B because A has observed C help D.

7.1.2 Outline of a theory of prosocial contagion

Previous research has suggested that there are two distinct mechanisms for the con-
tagion of prosocial behavior among strangers: generalized reciprocity and third-
party influence. Generalized Reciprocity (GR) refers to cases in which those who
benefit from a stranger’s prosocial behavior behave more prosocially towards an-
other in the future. As diagrammed in Fig. 7.1, A helps B because C has helped
A [11, 12]. Third-party influence (TPI) refers to cases in which those who observe
prosocial behavior by strangers behave more prosocially towards a stranger: A helps
B because A has seen C help D. GR characterizes “pay it forward” behavior trig-
gered by a normative or affective response to being helped [13], while TPI charac-
terizes social learning through imitation of others’ behavior.

GR and TPI also differ in the pattern of transmission. GR transmits the contagion
from person to person through direct contact and hence its contagious effect is con-
strained to the chain of those who were previously helped. In contrast, TPI has the
potential to broadcast the contagion from one person to any number of observers.
The interaction of the two mechanisms could generate a powerful self-reinforcing
dynamic that dramatically increases the rate of prosocial behavior in an initially
uncooperative population.

In this chapter, we summarize an online experiment that distinguished between the
behavioral effects of the two contagion mechanisms [14] and use an agent-based
model to investigate the contagion dynamics and the population-level outcomes that
they entail. The results show that receiving help can increase the willingness to be
generous towards others, but observing help can have the opposite effect, particu-
larly among those who have not received help. We use a threshold model with dy-
namic interaction structure and adaptive behavior to simulate a population of agents
with this behavior. The computational experiments indicate that the agents can self-
organize in communities based on voluntary contributions in two possible ways. On
the one hand, when contributions are rival, a handful of altruists can lead to the emer-
gence of small clusters of contributors as long as agents observe contribution benefi-
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ciaries in a relatively large radius (for example, via gossip) and unsatisfied agents are
not too mobile. On the other hand, when contributions are non-rival, communities
are much more likely to emerge and the level of contributions is higher when agents
observe contributors rather than recipients. These two pathways roughly correspond
to offline and online interactions. They offer explanation for the fact that cultures of
kindness are rare for anonymous face-to-face interactions but common on the Web,
for example, in the form of communities based on user generated content.

7.2 Testing individual mechanisms

Causal mechanisms are notoriously difficult to observe in natural settings, and
controlled diffusion experiments with large groups are highly impractical in tra-
ditional laboratory settings. To test the two contagion mechanisms, we therefore
designed and conducted a large behavioral experiment online. The experiment used
anonymity to isolate the effects of GR and TPI from other cooperation-inducing
mechanisms, including direct and indirect reciprocity, as well as peer pressure based
on reputation effects. To isolate GR from TPI, we manipulated the extent to which
participants received and observed help.

7.2.1 Online experiment

The study was designed as a sequential two-player investment/gift-exchange game
in groups of 150 with random partner selection. In the game, a participant could
choose to return part of their payment so that another anonymous participant could
benefit.

We first recruited a pool of potential participants by posting a task on the online
crowdsourcing platform Amazon Mechanical Turk (AMT). The task invited AMT
users to sign up for a study that offered the chance to earn up to $14-21 for doing
the same $2-3 ten-minute task multiple times. The AMT users were informed that
they could only participate in the task and earn the promised amount if they were
randomly selected from the pool of potential participants. Participants were eligible
to be selected multiple times but there was no guarantee that they would be selected
even once. If selected, the participant was to receive an e-mail notification with
further instructions.

The email invitation informed recipients that they were randomly chosen to partici-
pate in the game, which they had to complete within 24 hours. Participants were then
directed to our website, where they read a description of the game and made a single
decision about whether to donate money to benefit a stranger. The game description
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explained to each participant that they would be paid the amount promised in the
original solicitation, which included a “base” payment plus a “bonus” payment. Par-
ticipants were also told that they were part of a group of 150 AMT users and that
only members of this group who received an invitation could actually participate
and receive the promised payment. The instructions further informed participants
that the study had allocated a limited number of invitations to be distributed to ran-
domly selected participants (“seeds”). The seeds were invited by the experimenters
to participate. In addition to these invitations created by the experimenters, each
participant who received and accepted an invitation had the option to create a new
invitation and allow one more person to participate. However, in order to create a
new invitation, the participant had to be willing to donate his or her bonus, even
though this would reduce the participant’s earnings. If the participant chose to do-
nate his or her bonus, a recipient of the new invitation (the “invitee”) would then
be randomly selected from the other 149 AMT users in the group. The instructions
explained further that when a participant donated his or her bonus, we supplemented
the bonus amount so that the next invited participant received the same base pay-
ment and bonus and had the same options: to keep his or her bonus or donate it and
create a new invitation for one more participant.

All participants knew that the person who receives the donated invitation would not
know the identity of the participant who made the donation. Thus, anyone receiv-
ing a donated invitation was unable to directly reciprocate or to pass along a fa-
vorable reputation. We referred to participants by their AMT worker ID, randomly
anonymized in a way that precluded the possibility to identify the same individual
and be influenced by reputation.

The experiment involved five manipulations: whether the participant received a do-
nated invitation created by another participant (i.e. being a “link”), the number of
times the participant was invited to play the game (ranging from one to six), whether
the participant was able to observe donated invitations, the number of donated in-
vitations the participant observed (ranging from zero to 223), and the payment the
participant received ($2 base rate and $1 bonus or $1 base rate and $1 bonus).

The observation and payment manipulations were crossed to define four between-
individual treatment groups to which participants were randomly assigned. The
number of invitations received and observed varied within individual. Further, some
participants were only selected as seeds, others were only selected as invitees, and
still others were selected as invitees after having been previously selected as seeds.

7.2.2 Results

After removing data from participants who did not demonstrate an adequate un-
derstanding of the instructions, we were left with 518 individuals and 1,070 ob-
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servations. We used random-intercepts logistic regression models of observations
nested in individuals to estimate the change in the odds of donating under the dif-
ferent manipulations. The models allow us to adjust for the non-independence of
repeated measures and control for the effect of payment level and two other poten-
tial confounders, the time elapsed between subsequent interactions and the number
of previous interactions. To better isolate the mechanisms, the models pool data only
form the relevant treatment conditions: we tested GR in the no-observation condi-
tion only, we tested TPI for seeds only, and we tested the interaction of GR and TPI
in the observation condition only.

Consistent with GR, participants were more likely to be generous towards a stranger
after experiencing generosity (Table 1A). However, the effect is limited to the first
receipt of generosity as the critical event in triggering GR. The odds of donating do
not continue to increase with receiving additional donated invitations.

Consistent with TPI, there was a statistically significant increase in the odds of do-
nating among the seeds who had observed between 0 and 75 donated invitations,
compared to those who had not observed any (Table 1B). However, the level of do-
nation among those who observed more than 75 invitations was not significantly
greater than the baseline level. In other words, similarly to GR, the effect of TPI
appears to be concave, with most of the effect evident at relatively low levels of
observed donation and little subsequent change.

Less intuitively, the effect from observing widespread generosity is significantly
different for those who have recently benefited from generosity compared to those
who have not. When observing more than 75 donated invitations, the odds of do-
nating decrease for seeds but do not change for invitees (Table 1C). This difference
between seeds and invitees is statistically significant (χ2 (1 df) = 3.88, p = 0.049
for observing 76− 150; χ2 (1 df) = 5.55, p = 0.019 for observing 151+) and sug-
gests the possibility that seeds succumb to a “free-riding” effect from which invitees
are immune due to having been recipients of generosity. Free riding represents the
temptation to refrain from contributions, especially when one becomes aware that
others are already contributing. The behavior is common in collective-action situa-
tions [15] and is also known as social loafing [16] and as the “bystander effect” or
“diffusion of responsibility” [17].

In sum, the experimental results show that receiving and observing generosity can
significantly increase the likelihood to be generous towards a stranger. However,
the willingness to contribute can be offset by lower perceived need when the level
of helping is sufficiently high. This “bystander effect” is especially evident among
those who have not themselves benefited from generosity. In other words, the norm
to “be generous if that is what others are doing” weakens when the level of helping
behavior is high, unless it interacts with the normative obligation to “pay it forward.”

The implications of the effects of the two contagion mechanisms for the dynamics
of helping cascades are not intuitively obvious. We therefore incorporated the em-
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pirical findings in an agent-based model to investigate the macro-level effects of GR
and TPI.

7.3 Extrapolating to population outcomes

Our model is a threshold model of collective behavior. Such models have been pre-
viously used to study the emergence of collective action and the resolution of social
dilemmas [18, 19, 20]. In this literature, a threshold is the critical number or propor-
tion of contributors at which an individual becomes willing to contribute to a collec-
tive action or to join a collective behavior. Depending on the distribution of individ-
ual thresholds, cascades are possible in which each additional participant triggers
participation by others. It has been established that the emergence of widespread
participation critically depends on the composition of the population, and in partic-
ular, the existence of a critical mass of altruists, or unconditional contributors.

We model diffusion through the dynamics of selection and influence by relaxing two
common assumptions in existing threshold models: fixed interaction structure and
fixed individual interests in contributing. Our model assumes that agents both move
in space (similarly to Ref. [21]) and adapt their behavior (similarly to Ref. [19,
22, 23, 24]). By combining dynamic interaction structure with adaptive behavior,
our model is similar to evolutionary-game models on cooperation [25, 26, 27, 28,
29, 30]. In these models, agents choose an action or a strategy in the Prisoner’s
Dilemma and play it against each of their interaction neighbors. The agents update
their behavior by imitating successful neighbors and find more beneficial interaction
partners by moving on a spatial grid or rewiring their interaction network. In our
model, agents play a gift game with a different number of their neighbors, depending
on the rivalness of the exchanged gifts. Influence occurs not because agents imitate
others but because they condition their behavior on others’ behavior.

7.3.1 Simulation model

7.3.1.1 Assumptions

The model assumes that agents are heterogeneous with respect to their natural pro-
clivity to condition their contributions on others’ behavior and their own outcomes.
These proclivities are exogenously predetermined and remain fixed throughout so-
cial interactions. In addition to generalized reciprocity, third-party influence, and
free riding, the model assumes two other behavioral mechanisms: unconditional
altruism and aspiration. Unconditional altruism captures the extent to which indi-
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viduals are willing to help strangers regardless of others’ behavior or their own
outcomes. Aspiration is the expectation about the extent to which one should bene-
fit from others’ contributions. Aspiration is the benchmark against which the agent
evaluates outcomes as satisfactory [31]. If outcomes are unsatisfactory, the agent
can decide to move to a different community (similarly to Ref. [21]). We set the
aspiration as θA ∼Uni f orm(0,0.5).

Following previous research [24], agents are assigned a level of unconditional altru-
ism that is randomly drawn from a beta distribution: θUA ∼ Beta(α,β ). The model
fixes α = 5 and β = 5. The resulting distribution lacks a critical mass of altru-
ists because the majority of individuals have values close to 0.5. This distribution
matches the empirical distribution of behavioral types in the general population,
characterized by few unconditional altruists (about 13%) and a majority of condi-
tional contributors (50-63%; [32, 33]). Nevertheless, previous analytical work on
deterministic threshold models in fixed populations has shown this type of distribu-
tion not to favor the emergence of high-levels of contribution [18, 24]. Compared
to these earlier models, we start from a lower level of unconditional altruism that is
more empirically plausible.

The model assumes that generalized reciprocity GR ∼ Uni f orm(0,1) and third-
party influence T PI ∼Uni f orm(0,1). The higher the value of GR (TPI) the more
the agent’s contribution behavior is sensitive to benefits received (observed). For
consistency, the free-riding value is always at least as large as the unconditional-
altruism value: θFR = θUA +FR(1−θUA), where FR∼Uni f orm(0,1). The higher
the value of FR, the lower the observed level of contribution at which the agent
refrains from contributing in order to free-ride on others’ effort.

The model also assumes that the interaction structure is a square lattice that wraps
into a torus. This structure is characterized by a high average clustering, long aver-
age path-lengths, and regularity in network positions. The structure is a poor rep-
resentation for persistent social relations such as friendships and business contacts.
However, it is a suitable heuristic for interactions between strangers in geographical
space. Further, we assume that an agent’s interaction neighborhood does not entirely
coincide with the agent’s observation neighborhood. In both cases, the neighbor-
hood is a Moore neighborhood (a square with the focal agent in the center) but the
radius of the neighborhood can vary. A larger interaction neighborhood corresponds
to a larger community size while a larger observation neighborhood corresponds to
a higher degree of gossip or centralized broadcasting.

7.3.1.2 Behavioral rules

The five behavioral mechanisms come together in two separate threshold functions
that determine whether agents contribute to a neighbor (or multiple neighbors) from
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Fig. 7.2: Three thresholds in the simulation model. The upward behavior threshold
depends on unconditional altruism (θUA) but can decrease due to third-party in-
fluence (T PI×Mo). The downward behavior threshold depends on the proclivity to
free ride (θFR) but can increase due to generalized reciprocity (GR×Mr). The move-
ment threshold depends on the aspiration (θA). The agent makes a contribution to the
benefit of a random neighbor(s) within her interaction neighborhood if the contribu-
tions she remembers receiving (Mr) match or surpass her upward threshold but the
contributions she remembers observing (Mo) do not exceed her downward thresh-
old. The agent moves to a new empty site within her observation neighborhood if
the contributions she remembers receiving (Mr) fall below her aspiration.

their interaction neighborhood and whether agents move to a new location in their
observation neighborhood.

The contribution threshold models the combined effect from receiving and observ-
ing others’ contributions on one’s likelihood to contribute. As in the empirical re-
sults, benefiting from others’ contributions increases one’s likelihood to contribute
and decreases one’s likelihood to free-ride, while observing others’ contributions
could increase both one’s likelihood to contribute and one’s likelihood to free-ride.
Following previous models of non-monotonic threshold functions [22, 23, 24], the
function is characterized by two thresholds: an upward threshold θ0→1 and a down-
ward threshold θ1→0. The agent contributes as long as the number of received and
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observed contributions is within these two thresholds. The upward threshold is pre-
determined by the agent’s unconditional altruism but decreases if the agent expe-
riences third-party influence. The downward threshold is anchored by the agents’
proclivity to free ride but increases if the agent succumbs to generalized reciprocity
(Fig. 7.2). More specifically:

θ0→1(t) = θUA−T PI×Mo(t)×θUA,

θ1→0(t) = θFR−GR×Mr(t)× (1−θFR), (7.1)

where Mr(t) is the number of contributions the agent remembers receiving and
Mo(t) is the proportion of contributions the agent remembers observing in her ob-
servation neighborhood. The agent makes a contribution to the benefit of a random
neighbor(s) within her interaction neighborhood if the contributions she remembers
receiving match or surpass her upward threshold but the contributions she remem-
bers observing do not exceed her downward threshold:

• Behavior Rule 1: Contribute if Mr(t)≥ θ0→1 and Mo(t)< θ1→0(t).

Similarly, the agent moves with probability µ (mobility) to a random empty site
within her observation neighborhood if the contributions she remembers receiving
do not match her aspiration:

• Behavior Rule 2: Move with probability µ if Mr < θA.

Thus, agents who are satisfied with their outcomes tend to stick to the community
they have found but unhappy agents tend to move to communities with higher levels
of contribution. Mr(t) and Mo(t) are simply the number of contributions the agent
received and the proportion of local contributions the agent observed in the previous

m time periods, where m is the length of memory. More formally, Mr(t) =
∑

t−1
t−m rt
m

and Mo(t) =
∑

t−1
t−m ot n−1

t
m , where rt is the number of times the agent benefited from a

contribution at time t, ot is the number of contributions the agent observed at time
t, and nt is the size of the agent’s neighborhood at time t. For the model, m = 5
was chosen because this value produced high variability in the results. Increasing
constricts the conditions for emergence of contributions since more random events
become necessary in an agent’s neighborhood in order to convert that agent into a
contributor.

Updating is synchronous for both the decision to contribute and to move. At each
time period, agents are drawn in random order to decide whether to contribute, given
the contributions they observed and the amount of contributions they received up
until the last period. Once all agents have had the chance to update their behavior,
the agents decide whether to move, given the amount of contributions they have
received until the end of the current period. Thus, the model assumes that agents
observe and receive contributions within each time period and then decide whether
to contribute (Behavior Rule 1) and whether to leave a community (Behavior Rule
2). Since threshold models have been shown not to be robust to noise [34], the model
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assumes that there is a small probability ε = 10−3 that an agent’s contribution or
movement decision is reversed.

7.3.1.3 Parameter space

To preclude sensitivity to initial conditions and synchronous updating, the model
used behavioral and movement noise, the simulations were run for a sizable agent
population, and the results were averaged over multiple repetitions. The fixed pa-
rameters in the model (the shape and the range of the distributions and the length
of memory) were chosen with the goal to keep them as simple as possible while
producing the highest variation in results along the variable parameters.

The computational experiments were run for a population of 1000 agents on a torus
(40% occupied locations). The experiments investigated the average contribution
level (i.e. the proportion of contributors) for two different levels of rivalness: we
assume that rival contributions benefit one recipient, while non-rival contributions
benefit 3 recipients. The effects of four parameters are explored:

• The mobility µ ∈ [0,0.05,0.5]. This is the probability to move if the agent is
unhappy with what she receives from the current community. This parameter
represents community turnover. (Turnover could also be adjusted by varying
the average aspiration θA.)

• The radius of the interaction neighborhood ∈ [1,2,3,4,5,7,10,15]. Since the
model uses Moore neighborhoods, this is equivalent to a maximum of [8,24,48,80,120,224,440,960]
neighbors for each agent. This parameter corresponds to community size.

• The radius of the observation neighborhood ∈ [0,1,2,3,4,5,6,10,15]. Since
the model uses Moore neighborhoods, this is equivalent to a maximum of
[0,8,24,48,80,120,224,440,960] neighbors for each agent. This parameter is
related to gossip and centralized broadcasting.

• The observation targets ∈ [recipients,contributors]. Agents observe either the
proportion of contributors or the proportion of beneficiaries within their obser-
vation neighborhood.

The simulations were run for 5000 periods which was sufficient for convergence
to an equilibrium. The equilibrium proportion of contributors was then estimated
by averaging the proportion of contributors over the last 1000 periods.The resulting
equilibrium proportion of contributors was then averaged over 25 replications for
each parameter combination.
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Fig. 7.3: The equilibrium proportion of contributors by observation radius and in-
teraction radius for contributors as observation target and mobility µ = 0 (top),
µ = 0.05 (middle), and µ = 0.5 (bottom). Results are shown for rival (left) and
non-rival (right) contributions.

7.3.2 Results

Fig. 7.3 shows that for non-rival contributions, the equilibrium level of contributing
is visibly higher than for rival contributions. Further, for non-rival contributions, the
conditions for the emergence of contribution-based communities are significantly
less restricted.

When the exchanged contributions are non-rival, the global level of contribution is
high over a large range of interaction radii. Widespread contribution fails to emerge
only when the interaction radius and/or the observation radius are extremely large.
This implies that non-rival exchange allows for relatively large contribution-based
communities. For relatively large communities (interaction radius > 1), observed
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Fig. 7.4: The equilibrium proportion of contributors by observation radius when in-
teraction is constrained to immediate neighbors only (interaction radius = 1). Line
colors show levels of mobility and line types differentiate the observation target.
Results are shown for rival (left) and non-rival (right) contributions. The thick lines
show the proportion averaged over 25 replications for that particular parameter com-
bination. The thin lines show the minimum and the maximum proportions achieved
in the replications.

contribution has little effect, and 100% contribution is possible even when there
is no observation (observation radius = 0). Overall, observing contributors has a
greater effect than observing recipients (right column in Fig. 7.3 and 7.4). Com-
munity turnover does not affect outcomes except when the communities are small
(interaction radius = 1) or when observation is widespread in large communities. In
the first case, some mobility is better than no mobility (Fig. 7.4, right) and in the
second case, too much mobility is bad (right column in Fig. 7.3).

When the exchanged contributions are rival, only small communities can have high
levels of contribution (optimal interaction radius ∼ 2− 3; left column in Fig. 7.3).
Further, observation is crucial for the emergence of contribution communities: the
level of contribution is zero when there is no observation. As the observation ra-
dius increases, the level of contribution radically increases initially but eventually
starts decreasing slowly (left in Fig. 7.4 and 7.5). The optimal observation radius
is between 2 and 5, depending on the target of observation. Compared to observing
contributors, observing recipients requires a smaller observation radius to achieve
the maximum level of contribution. Finally, the effect of mobility is non-monotonic:
low mobility (µ = 0.05) is better than no mobility (µ = 0) or too much mobility
(µ = 0.5).

Fig. 7.6 identifies the reason for differences between rival and non-rival contribu-
tions. Non-rivalness implies that a larger number of individuals can benefit from a
single contribution, as when a user is given advice that benefits many others in an on-
line community. This leads to the easy formation of multiple small communities in
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Fig. 7.5: The emergence of contribution by observation radius when interaction is
constrained to immediate neighbors and neighbors of neighbors (interaction radius
= 2). Line colors show levels of mobility and line types differentiate the observation
target. Results are shown for rival (left) and non-rival (right) contributions. The thick
lines show the proportion averaged over 25 replications for that particular parame-
ter combination. The thin lines show the minimum and the maximum proportions
achieved in the replications.

which contributors benefit and hence continue contributing, despite free-riders who
benefit enough to hang around the periphery of the clusters. When contributions are
rival and only one individual can benefit from each contribution, contribution-based
communities are much less likely to emerge and persist. If they do, this usually hap-
pens around a core of unconditional altruists (agents with low θUA and θFR high)
who form a critical mass. These agents (the blue agents in Fig. 7.6, left column)
continue contributing regardless of what others around them do. When outcome-
based mobility is relatively low, the agents remain in the neighborhood long enough
to have a chance to benefit from a contribution or to observe many others bene-
fiting. (If they were observing contributors instead of recipients, they would have
only observed the altruist or the few altruists that started contributing, not the many
neighbors who benefit). As a result, a few clusters form around the handful of altru-
ists in the population but the contagion does not spread to agents in other corners of
the space.

The differences in the macro-outcomes between rival and non-rival contributions
result from the structure of interactions and not from the differences in effect size.
Assuming that the GR and T PI effects for non-rival contributions are weaker than
the GR and T PI effects for rival contributions does not significantly affect the emer-
gence of non-rival contributions.
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Fig. 7.6: The emergence of contribution communities for rival (left) and non-rival
(right) contributions for interaction radius = 1, observation radius = 5, observing
recipients, and mobility. Agents in blue contribute but do not benefit, agents in red
benefit but do not contribute, and agents in purple both contribute and benefit.

7.4 Discussion

Selfless acts of kindness and anonymous voluntary donations can be puzzling, even
though they are not uncommon. In daily life, people donate blood, contribute money
to charity, hold the door open for the person behind, or vacate a subway seat for
an elderly passenger. In the online world, users review services, rank products, or
answer strangers’ questions on forums. Why do communities vary in the level of
member contributions? This study suggests that the answer could lie in the conta-
gion of prosocial behavior. We first presented empirical evidence from an online
experiment for the existence and interaction of two distinct mechanisms of conta-
gion – generalized reciprocity and third-party influence. We then implemented these
mechanisms in an agent-based model to investigate the conditions under which they
lead to high levels of contributions at the population level.

The empirical results showed that receiving and observing helping behavior can
increase the likelihood to help a stranger. However, the willingness to contribute
can be offset by lower perceived need when the level of helping is sufficiently high,
particularly among those who have not themselves been helped.

We implemented these findings in a threshold model with dynamic interaction struc-
ture and adaptive behavior. The computational experiments suggested two alterna-
tive pathways to the emergence of contribution-based communities. It is useful to
think of these two pathways in the context of rival face-to-face interactions on the
one hand and non-rival online contributions on the other hand. In face-to-face inter-
actions, acts of generosity are rival if the benefit is limited to the intended recipient,
as happens when holding the door open or vacating one’s seat for a stranger. The
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simulation results show that these contributions can emerge and spread in small and
stable communities, that is, communities that are tightly knit and have little turnover.
In such communities, hearing about or seeing other people who benefit from the
kindness of strangers increases contributions. As a result, a relatively small number
of persistent altruists can trigger the spread of helping behavior. In this situation,
gossip and newspaper reports about anonymous acts of generosity play an impor-
tant role. For example, in an office environment, a single active anonymous altruist
could trigger a chain of generosity so long as there is sufficient gossip about the
level of charitable behavior such that observers come to believe that generosity is
normative and conform to this “office culture.”

In comparison, non-rival contributions, such as writing a product review on the Web
or answering a question in an online forum, are much more likely to emerge and
spread across a wider range of conditions, including in much larger groups with
high turnover. For example, small esoteric-interest groups and large general-topic
online portals could be equally successful user-generated content communities. In
such communities, hearing about or seeing other people who contribute sustains
high levels of contribution, while awareness of the number of beneficiaries decreases
contribution (perhaps due to the belief that there is little need for additional sacri-
fice).

However, a disclaimer is in order. The chapter provides a plausible explanation for
the emergence and persistence of voluntary contribution-based communities but
is mainly intended to address the emergence of contribution communities among
anonymous individuals. Undoubtedly, once a community forms and anonymity di-
minishes, cooperation-inducing mechanisms based on social sanctions (for example,
reputation systems or long-term-membership privileges) become more prominent
and more effective.
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Manipulation A)GR B)TPI C)GRxTPI

Invitee (receives a donated invitation) 7.006 (0.030)* 0.327 (0.262)

Has previously received donated invitations 0.712 (0.686) 1.021 (0.982)

Seeds

Observes 0-75 11.414* (0.043) (baseline)

Observes 75-150 1.341 (0.787) 0.136 (0.101)

Observes 151+ 0.219 (0.280) 0.015* (0.022)

Invitees

Observes 76-150 19.907* (0.041)

Observes 151+ 89.948* (0.026)

High Payment 64.103** (0.007) 2.532 (0.300) 3.235 (0.295)

Time waited (in hours) 0.972* (0.023) 0.992 (0.577) 0.976 (0.075)

Previous participations 0.690 (0.379) 0.784 (0.622) 0.454 (0.171)

Baseline odds 4.305 (0.181) 5.323 (0.100) 268.707*** (0.000)

Number of observations 516 371 554

Number of participants 252 277 266

Wald χ2 5 df, 11.93* (0.036) 6 df, 6.66 (0.354) 8 df, 11.98 (0.214)

Two-sided tests:* p<0.05, ** p<0.01, ***p<0.001

Table 7.1: Odds ratios for donating across treatments. The table reports odds ratios
and p values (in brackets) from random-intercept logistic regression models for A)
seeds and invitees in the no-observation treatment by number of donated invitations
received; B) seeds in the observation and no-observation treatments by number of
donated invitations observed; and C) seeds and invitees in the observation treatment
by number of donated invitations observed by invitees compared to seeds. Results
show that receiving and observing donations initially increases the willingness to
help others, and that invitees are less susceptible to a subsequent decline in helping.


	Introduction
	Bruno Gonçalves and Nicola Perra
	Online Queries
	Twitter
	Cell Phones
	Bibliographic Databases
	Offline Interactions
	Structure of the Book
	References

	Part I Social Behavior under normal conditions
	Modeling and Understanding Intrinsic Characteristics of Human Mobility
	Jameson L. Toole and Yves-Alexandre de Montjoye and Marta C. González and Alex (Sandy) Pentland
	Introduction
	New Data Sources
	Individual Mobility Models
	Aggregate Mobility
	Human behavior and mobility
	Mobility and Disease Spread
	Mobility and Social Behavior
	Mobility and Economic Outcomes

	Conclusion
	References

	Face-to-face interactions
	Alain Barrat and Ciro Cattuto
	Introduction
	Proxies of face-to-face interactions and measurement strategies
	Face-to-face interactions as temporal networks
	Structures and structure discovery
	Structures in aggregated data
	Longitudinal structures
	Mesoscopic structures and latent factor analysis

	Modelling face-to-face interactions
	Conclusions and open problems
	References

	Modeling and predicting human infectious diseases
	Nicola Perra and Bruno Gonçalves
	Introduction
	Basic Concepts in Mathematical Epidemiology
	Modeling Transitions Between Compartments
	The SIR model

	Beyond Homogeneous Mixing
	The SIR model in networks

	Metapopulation Models
	Agent-Based Models
	Digital Epidemiology
	Social media based epidemic models

	Discussion
	References

	Early Signs of Financial Market Moves Reflected by Google Searches
	Tobias Preis and Helen Susannah Moat
	Introduction
	Results
	Discussion
	Appendix
	References

	Online Interactions
	Lilian Weng, Filippo Menczer, and Alessandro Flammini
	Introduction
	Social Link Formation
	Communication Dynamics

	Case Study: Traffic-Based Social Link Formation
	Link Creation Mechanisms
	Rules of Network Evolution

	Discussion
	References

	The Contagion of Prosocial Behavior and the Emergence of Voluntary-Contribution Communities
	Milena Tsvetkova and Michael Macy
	Introduction
	The puzzle of online generosity
	Outline of a theory of prosocial contagion

	Testing individual mechanisms
	Online experiment
	Results

	Extrapolating to population outcomes
	Simulation model
	Results

	Discussion
	Acknowledgements
	References

	Understanding the Scientific enterprise: citation analysis, data and modeling
	Filippo Radicchi and Claudio Castellano
	Introduction
	Bibliographic datasets
	Static models
	Citation distributions
	Citation networks

	Dynamical models
	Preferential attachment
	Aging
	Fitness

	Impact prediction
	Conclusions
	References

	Part II Social Behavior under stress
	Behavioral changes and adaptation induced by epidemics
	Piero Poletti and Marco Ajelli and Stefano Merler
	Risk perception, human behavior and epidemics
	Epidemic modeling and game theory

	Uncoordinated human behavioral response to an epidemic
	Model formulation
	Study of dynamics
	The effectiveness of spontaneous behavioral changes in reducing the the risk of infection

	Dynamic vaccine demand under voluntary vaccination programs
	Model formulation
	The impact of vaccine side effects on the natural history of immunization programs

	Conclusions
	References

	Uncovering criminal behavior with computational tools
	Emilio Ferrara, Salvatore Catanese and Giacomo Fiumara
	Introduction
	LogViewer framework
	Architecture and workflow
	Data and network representation
	Data normalization and cleaning

	Static analysis of criminal networks
	Centrality measures
	Community detection in criminal networks
	Criminal network visualization

	Spatio-temporal criminal networks analysis
	Temporal network analysis
	Spatial network analysis

	A Use case inspired by real investigations
	The initial configuration
	Finding subgroups
	Overlapping communities

	Related Work
	Conclusions
	References

	Modeling human conflict and terrorism across geographic scales
	Neil F. Johnson, Elvira Maria Restrepo and Daniela E. Johnson
	Introduction
	Context and Data
	Theoretical background
	Timing of fatal events and a dynamical Red Queen
	Severity of events and group dynamics
	Outlook
	Appendix
	References

	Event-related Crowd Activities on Social Media
	Yu-Ru Lin
	Introduction
	Background
	Crowd as Event Sensors
	Crowd as Event Predictors
	Crowd Characterization Around Events.
	Discussion and Future Directions
	References
















